- Timestamp:
- 08/14/24 02:48:39 (4 months ago)
- Location:
- framspy/dissimilarity
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
framspy/dissimilarity/alignmodel.py
r1208 r1325 2 2 import numpy as np 3 3 4 4 5 def wcentre(matrix, weights): 5 sw = weights.sum() 6 swx = (matrix*weights).sum(axis=1) 7 swx /= sw 8 return (matrix.transpose()-swx).transpose()*np.sqrt(weights) 9 6 sw = weights.sum() 7 swx = (matrix * weights).sum(axis=1) 8 swx /= sw 9 return (matrix.transpose() - swx).transpose() * np.sqrt(weights) 10 11 10 12 def weightedMDS(distances, weights): 11 12 distances = distances**213 14 15 16 17 18 W = (vh/np.sqrt(weights)).T19 S = np.zeros((n,n))20 21 S = S**0.522 23 24 coords[:,0]=dcoords[:,0]25 for i in range(1,3):26 if n>i:27 coords[:,i]=dcoords[:,i]28 29 13 n = len(weights) 14 distances = distances ** 2 15 for i in range(2): 16 distances = wcentre(distances, weights) 17 distances = distances.T 18 distances *= -0.5 19 _, eigenvalues, vh = np.linalg.svd(distances) 20 W = (vh / np.sqrt(weights)).T 21 S = np.zeros((n, n)) 22 np.fill_diagonal(S, eigenvalues) 23 S = S ** 0.5 24 dcoords = W.dot(S) 25 coords = np.zeros((n, 3)) 26 coords[:, 0] = dcoords[:, 0] 27 for i in range(1, 3): 28 if n > i: 29 coords[:, i] = dcoords[:, i] 30 return coords 31 30 32 31 33 def align(model, fixedZaxis=False): 32 numparts =model.numparts._value()34 numparts = model.numparts._value() 33 35 distmatrix = np.zeros((numparts, numparts), dtype=float) 34 36 for p1 in range(numparts): 35 for p2 in range( numparts): #TODO optimize, only calculate a triangle36 P1 =model.getPart(p1)37 P2 =model.getPart(p2)37 for p2 in range(p1 + 1, numparts): # only calculate a triangle since Euclidean distance is symmetrical 38 P1 = model.getPart(p1) 39 P2 = model.getPart(p2) 38 40 if fixedZaxis: 39 # fixed vertical axis, so pretend all points are on the xy plane41 # fixed vertical axis, so pretend all points are on the xy plane 40 42 z_dist = 0 41 43 else: 42 z_dist = (P1.z._value() -P2.z._value())**243 distmatrix[p1, p2]=math.sqrt((P1.x._value()-P2.x._value())**2+(P1.y._value()-P2.y._value())**2+z_dist)44 44 z_dist = (P1.z._value() - P2.z._value()) ** 2 45 distmatrix[p1, p2] = distmatrix[p2, p1] = math.sqrt((P1.x._value() - P2.x._value()) ** 2 + (P1.y._value() - P2.y._value()) ** 2 + z_dist) 46 45 47 if model.numjoints._value() > 0: 46 weightvector =np.zeros((numparts), dtype=int)48 weightvector = np.zeros((numparts), dtype=int) 47 49 else: 48 weightvector =np.ones((numparts), dtype=int)49 50 weightvector = np.ones((numparts), dtype=int) 51 50 52 for j in range(model.numjoints._value()): 51 J =model.getJoint(j)52 weightvector[J.p1._value()] +=153 weightvector[J.p2._value()] +=154 weightvector =weightvector.astype(float)# convert to float once, since later it would be promoted to float so many times anyway...53 J = model.getJoint(j) 54 weightvector[J.p1._value()] += 1 55 weightvector[J.p2._value()] += 1 56 weightvector = weightvector.astype(float) # convert to float once, since later it would be promoted to float so many times anyway... 55 57 coords = weightedMDS(distmatrix, weightvector) 56 58 … … 66 68 P.z = coords[p, 2] 67 69 68 69 70 if fixedZaxis: 70 71 if np.shape(coords)[1] > 2: 71 #restore original z coordinate72 # restore original z coordinate 72 73 for p in range(numparts): 73 P=model.getPart(p) 74 coords[p,2]=P.z._value() 75 74 P = model.getPart(p) 75 coords[p, 2] = P.z._value() -
framspy/dissimilarity/density_distribution.py
r1322 r1325 41 41 42 42 43 def calculateNeighb erhood(self,array,mean_coords):43 def calculateNeighborhood(self,array,mean_coords): 44 44 """ Calculates number of elements for given sample and set ups the center of this sample 45 45 to the center of mass (calculated by mean of every coordinate) … … 55 55 weight = len(array) 56 56 if weight > 0: 57 point = [np.mean(array[:,0]),np.mean(array[:,1]),np.mean(array[:,2])]57 point = np.mean(array, axis=0) # equivalent to [np.mean(array[:,0]),np.mean(array[:,1]),np.mean(array[:,2])] 58 58 return weight, point 59 59 else: … … 62 62 63 63 def calculateDistPoints(self,point1, point2): 64 """ Returns euclidean distance between two points64 """ Returns Euclidean distance between two points 65 65 Args (distribution): 66 66 point1 ([float,float,float]) - coordinates of first point … … 71 71 72 72 Returns: 73 [float]: euclidean distance73 [float]: Euclidean distance 74 74 """ 75 75 if self.frequency: 76 return abs(point1-point2) 76 return abs(point1-point2) # TODO vector instead of scalar returned? 77 77 else: 78 return np. sqrt(np.sum(np.square(point1-point2)))78 return np.linalg.norm(point1-point2, ord=2) 79 79 80 80 … … 107 107 """ 108 108 lens = len(s1) 109 indices = [] 110 for i in range(lens): 111 if s1[i]==0 and s2[i]==0: 112 indices.append(i) 109 indices = [i for i in range(lens) if s1[i]==0 and s2[i]==0] 113 110 114 111 return np.delete(s1, indices), np.delete(s2, indices) … … 126 123 """ 127 124 lens = len(s1[0]) 128 indices = [] 129 for i in range(lens): 130 if s1[1][i]==0 and s2[1][i]==0: 131 indices.append(i) 125 indices = [i for i in range(lens) if s1[1][i]==0 and s2[1][i]==0] 132 126 133 127 s1 = [np.delete(s1[0], indices, axis=0), np.delete(s1[1], indices, axis=0)] … … 168 162 feature_array.append(len(array[rows])) 169 163 else: 170 weight, point = self.calculateNeighb erhood(array[rows],[edges_x[x]+step_x_half,edges_y[y]+step_y_half,edges_z[z]+step_z_half])164 weight, point = self.calculateNeighborhood(array[rows],[edges_x[x]+step_x_half,edges_y[y]+step_y_half,edges_z[z]+step_z_half]) 171 165 feature_array.append(point) 172 166 weight_array.append(weight) … … 180 174 181 175 def getSignaturesForPair(self,array1,array2): 182 """Generates signatures for given pair of models represented by array of voxels.176 """Generates signatures for a given pair of models represented by array of voxels. 183 177 We calculate space for given models by taking the extremas for each axis and dividing the space by the resolution. 184 178 This divided space generate us samples which contains points. Each sample will have new coordinates which are mean of all points from it and weight which equals to the number of points. … … 248 242 249 243 def calculateDissimforVoxels(self, voxels1, voxels2): 250 """Calculates EMD for pair of voxels representing models.244 """Calculates EMD for a pair of voxels representing models. 251 245 Args: 252 246 voxels1 np.array([np.array(,dtype=float)]: list of voxels representing model1. … … 254 248 255 249 Returns: 256 float: dissim for pair of list of voxels250 float: dissim for a pair of list of voxels 257 251 """ 258 252 numvox1 = len(voxels1) … … 278 272 if self.metric == 'l1': 279 273 if self.frequency: 280 out = np.linalg.norm( (s1-s2), ord=1)274 out = np.linalg.norm(s1-s2, ord=1) 281 275 else: 282 out = np.linalg.norm( (s1[1]-s2[1]), ord=1)276 out = np.linalg.norm(s1[1]-s2[1], ord=1) 283 277 284 278 elif self.metric == 'l2': 285 279 if self.frequency: 286 out = np.linalg.norm( (s1-s2))280 out = np.linalg.norm(s1-s2) 287 281 else: 288 out = np.linalg.norm( (s1[1]-s2[1]))282 out = np.linalg.norm(s1[1]-s2[1]) 289 283 290 284 elif self.metric == 'emd': … … 320 314 321 315 Returns: 322 float: dissim for pair of strings representing models.316 float: dissim for a pair of strings representing models. 323 317 """ 324 318 … … 349 343 listOfVoxels = [self.getVoxels(g) for g in listOfGeno] 350 344 for i in range(numOfGeno): 351 for j in range(numOfGeno): 345 for j in range(numOfGeno): # could only calculate a triangle if the definition of similarity and its calculation guarantees symmetry 352 346 dissimMatrix[i,j] = self.calculateDissimforVoxels(listOfVoxels[i], listOfVoxels[j]) 353 347 return dissimMatrix
Note: See TracChangeset
for help on using the changeset viewer.