Ignore:
Timestamp:
01/30/23 00:27:10 (22 months ago)
Author:
Maciej Komosinski
Message:

make_new_population() targets the desired popsize instead of preserving the input (current) population size

File:
1 edited

Legend:

Unmodified
Added
Removed
  • framspy/evolalg/base/experiment_abc.py

    r1190 r1194  
    4040        new_individual = Individual()
    4141        new_individual.set_and_evaluate(genotype, self.evaluate)
    42         if new_individual.fitness is not BAD_FITNESS:  # this is how we defined BAD_FITNESS in evaluate()
     42        if new_individual.fitness is not BAD_FITNESS:
    4343            ind_list.append(new_individual)
    4444
     
    4646        """'individuals' is the input population (a list of individuals).
    4747        Assumptions: all genotypes in 'individuals' are valid and evaluated (have fitness set).
    48         Returns: a new population of the same size as 'individuals' with prob_mut mutants, prob_xov offspring, and the remainder of clones."""
     48        Returns: a new population of size 'self.popsize' with prob_mut mutants, prob_xov offspring, and the remainder of clones."""
    4949
    5050        newpop = []
    51         N = len(individuals)
    52         expected_mut = int(N * prob_mut)
    53         expected_xov = int(N * prob_xov)
    54         assert expected_mut + \
    55             expected_xov <= N, "If probabilities of mutation (%g) and crossover (%g) added together exceed 1.0, then the population would grow every generation..." % (
    56                 prob_mut, prob_xov)
    57         ris = RandomIndexSequence(N)
     51        expected_mut = int(self.popsize * prob_mut)
     52        expected_xov = int(self.popsize * prob_xov)
     53        assert expected_mut + expected_xov <= self.popsize, "If probabilities of mutation (%g) and crossover (%g) added together exceed 1.0, then the population would grow every generation..." % (prob_mut, prob_xov)
     54        ris = RandomIndexSequence(len(individuals))
    5855
    5956        # adding valid mutants of selected individuals...
    6057        while len(newpop) < expected_mut:
    61             ind = self.select(
    62                 individuals, tournament_size=tournament_size, random_index_sequence=ris)
     58            ind = self.select(individuals, tournament_size=tournament_size, random_index_sequence=ris)
    6359            self.addGenotypeIfValid(newpop, self.mutate(ind.genotype))
    6460
    6561        # adding valid crossovers of selected individuals...
    6662        while len(newpop) < expected_mut + expected_xov:
    67             ind1 = self.select(
    68                 individuals, tournament_size=tournament_size, random_index_sequence=ris)
    69             ind2 = self.select(
    70                 individuals, tournament_size=tournament_size, random_index_sequence=ris)
    71             self.addGenotypeIfValid(
    72                 newpop, self.cross_over(ind1.genotype, ind2.genotype))
     63            ind1 = self.select(individuals, tournament_size=tournament_size, random_index_sequence=ris)
     64            ind2 = self.select(individuals, tournament_size=tournament_size, random_index_sequence=ris)
     65            self.addGenotypeIfValid(newpop, self.cross_over(ind1.genotype, ind2.genotype))
    7366
    7467        # select clones to fill up the new population until we reach the same size as the input population
    75         while len(newpop) < len(individuals):
    76             ind = self.select(
    77                 individuals, tournament_size=tournament_size, random_index_sequence=ris)
     68        while len(newpop) < self.popsize:
     69            ind = self.select(individuals, tournament_size=tournament_size, random_index_sequence=ris)
    7870            newpop.append(Individual().copyFrom(ind))
    7971
Note: See TracChangeset for help on using the changeset viewer.