source: framspy/evolalg/base/experiment_abc.py @ 1223

Last change on this file since 1223 was 1194, checked in by Maciej Komosinski, 22 months ago

make_new_population() targets the desired popsize instead of preserving the input (current) population size

File size: 9.7 KB
Line 
1import argparse
2import json
3import os
4import pickle
5import time
6from abc import ABC, abstractmethod
7
8from ..base.random_sequence_index import RandomIndexSequence
9from ..constants import BAD_FITNESS
10from ..json_encoders import Encoder
11from ..structures.hall_of_fame import HallOfFame
12from ..structures.individual import Individual
13from ..structures.population import PopulationStructures
14
15
16class ExperimentABC(ABC):
17
18    population_structures = None
19    hof = []
20    stats = []
21    current_generation = 0
22    time_elapsed = 0
23   
24
25    def __init__(self, popsize, hof_size, save_only_best=True) -> None:
26        self.hof = HallOfFame(hof_size)
27        self.popsize = popsize
28        self.save_only_best = save_only_best
29
30    def select(self, individuals, tournament_size, random_index_sequence):
31        """Tournament selection, returns the index of the best individual from those taking part in the tournament"""
32        best_index = None
33        for i in range(tournament_size):
34            rnd_index = random_index_sequence.getNext()
35            if best_index is None or individuals[rnd_index].fitness > best_index.fitness:
36                best_index = individuals[rnd_index]
37        return best_index
38
39    def addGenotypeIfValid(self, ind_list, genotype):
40        new_individual = Individual()
41        new_individual.set_and_evaluate(genotype, self.evaluate)
42        if new_individual.fitness is not BAD_FITNESS:
43            ind_list.append(new_individual)
44
45    def make_new_population(self, individuals, prob_mut, prob_xov, tournament_size):
46        """'individuals' is the input population (a list of individuals).
47        Assumptions: all genotypes in 'individuals' are valid and evaluated (have fitness set).
48        Returns: a new population of size 'self.popsize' with prob_mut mutants, prob_xov offspring, and the remainder of clones."""
49
50        newpop = []
51        expected_mut = int(self.popsize * prob_mut)
52        expected_xov = int(self.popsize * prob_xov)
53        assert expected_mut + expected_xov <= self.popsize, "If probabilities of mutation (%g) and crossover (%g) added together exceed 1.0, then the population would grow every generation..." % (prob_mut, prob_xov)
54        ris = RandomIndexSequence(len(individuals))
55
56        # adding valid mutants of selected individuals...
57        while len(newpop) < expected_mut:
58            ind = self.select(individuals, tournament_size=tournament_size, random_index_sequence=ris)
59            self.addGenotypeIfValid(newpop, self.mutate(ind.genotype))
60
61        # adding valid crossovers of selected individuals...
62        while len(newpop) < expected_mut + expected_xov:
63            ind1 = self.select(individuals, tournament_size=tournament_size, random_index_sequence=ris)
64            ind2 = self.select(individuals, tournament_size=tournament_size, random_index_sequence=ris)
65            self.addGenotypeIfValid(newpop, self.cross_over(ind1.genotype, ind2.genotype))
66
67        # select clones to fill up the new population until we reach the same size as the input population
68        while len(newpop) < self.popsize:
69            ind = self.select(individuals, tournament_size=tournament_size, random_index_sequence=ris)
70            newpop.append(Individual().copyFrom(ind))
71
72        return newpop
73
74    def save_state(self, state_filename):
75        state = self.get_state()
76        if state_filename is None:
77            return
78        state_filename_tmp = state_filename + ".tmp"
79        try:
80            with open(state_filename_tmp, "wb") as f:
81                pickle.dump(state, f)
82            # ensures the new file was first saved OK (e.g. enough free space on device), then replace
83            os.replace(state_filename_tmp, state_filename)
84        except Exception as ex:
85            raise RuntimeError("Failed to save evolution state '%s' (because: %s). This does not prevent the experiment from continuing, but let's stop here to fix the problem with saving state files." % (
86                state_filename_tmp, ex))
87
88    def load_state(self, state_filename):
89        if state_filename is None:
90            # print("Loading evolution state: file name not provided")
91            return None
92        try:
93            with open(state_filename, 'rb') as f:
94                state = pickle.load(f)
95                self.set_state(state)
96        except FileNotFoundError:
97            return None
98        print("...Loaded evolution state from '%s'" % state_filename)
99        return True
100
101    def get_state_filename(self, save_file_name):
102        return None if save_file_name is None else save_file_name + '_state.pkl'
103
104    def get_state(self):
105        return [self.time_elapsed, self.current_generation, self.population_structures, self.hof, self.stats]
106
107    def set_state(self, state):
108        self.time_elapsed, self.current_generation, self.population_structures, hof_, self.stats = state
109        # sorting: ensure that we add from worst to best so all individuals are added to HOF
110        for h in sorted(hof_, key=lambda x: x.rawfitness):
111            self.hof.add(h)
112
113    def update_stats(self, generation, all_individuals):
114        worst = min(all_individuals, key=lambda item: item.rawfitness)
115        best = max(all_individuals, key=lambda item: item.rawfitness)
116        # instead of single best, could add all individuals in population here, but then the outcome would depend on the order of adding
117        self.hof.add(best)
118        self.stats.append(
119            best.rawfitness if self.save_only_best else best)
120        print("%d\t%d\t%g\t%g" % (generation, len(
121            all_individuals), worst.rawfitness, best.rawfitness))
122
123    def initialize_evolution(self, initialgenotype):
124        self.current_generation = 0
125        self.time_elapsed = 0
126        self.stats = []  # stores the best individuals, one from each generation
127        initial_individual = Individual()
128        initial_individual.set_and_evaluate(initialgenotype, self.evaluate)
129        self.hof.add(initial_individual)
130        self.stats.append(
131            initial_individual.rawfitness if self.save_only_best else initial_individual)
132        self.population_structures = PopulationStructures(
133            initial_individual=initial_individual, archive_size=0, popsize=self.popsize)
134
135    def evolve(self, hof_savefile, generations, initialgenotype, pmut, pxov, tournament_size):
136        file_name = self.get_state_filename(hof_savefile)
137        state = self.load_state(file_name)
138        if state is not None:  # loaded state from file
139            # saved generation has been completed, start with the next one
140            self.current_generation += 1
141            print("...Resuming from saved state: population size = %d, hof size = %d, stats size = %d, archive size = %d, generation = %d/%d" % (len(self.population_structures.population), len(self.hof),
142                                                                                                                                                 len(self.stats),  (len(self.population_structures.archive)), self.current_generation, generations))  # self.current_generation (and g) are 0-based, parsed_args.generations is 1-based
143
144        else:
145            self.initialize_evolution(initialgenotype)
146        time0 = time.process_time()
147        for g in range(self.current_generation, generations):
148            self.population_structures.population = self.make_new_population(
149                self.population_structures.population, pmut, pxov, tournament_size)
150            self.update_stats(g, self.population_structures.population)
151            if hof_savefile is not None:
152                self.current_generation = g
153                self.time_elapsed += time.process_time() - time0
154                self.save_state(file_name)
155        if hof_savefile is not None:
156            self.save_genotypes(hof_savefile)
157        return self.population_structures.population, self.stats
158
159    @abstractmethod
160    def mutate(self, gen1):
161        pass
162
163    @abstractmethod
164    def cross_over(self, gen1, gen2):
165        pass
166
167    @abstractmethod
168    def evaluate(self, genotype):
169        pass
170
171    def save_genotypes(self, filename):
172        """Implement if you want to save finall genotypes,in default implementation this function is run once at the end of evolution"""
173        state_to_save = {
174            "number_of_generations": self.current_generation,
175            "hof": [{"genotype": individual.genotype,
176                     "fitness": individual.rawfitness} for individual in self.hof.hof]}
177        with open(f"{filename}.json", 'w') as f:
178            json.dump(state_to_save, f, cls=Encoder)
179
180   
181    @staticmethod
182    def get_args_for_parser():
183        parser = argparse.ArgumentParser()
184        parser.add_argument('-popsize',type= int, default= 50,
185                            help="Population size, default: 50.")
186        parser.add_argument('-generations',type= int, default= 5,
187                                help="Number of generations, default: 5.")
188        parser.add_argument('-tournament',type= int, default= 5,
189                            help="Tournament size, default: 5.")
190        parser.add_argument('-pmut',type= float, default= 0.7,
191                        help="Probability of mutation, default: 0.7")
192        parser.add_argument('-pxov',type= float, default= 0.2,
193                        help="Probability of crossover, default: 0.2")
194        parser.add_argument('-hof_size',type= int, default= 10,
195                            help="Number of genotypes in Hall of Fame. Default: 10.")
196        parser.add_argument('-hof_savefile',type= str, required= False,
197                                help= 'If set, Hall of Fame will be saved in Framsticks file format (recommended extension *.gen. This also activates saving state (checpoint} file and auto-resuming from the saved state, if this file exists.')
198        parser.add_argument('-save_only_best',type= bool, default= True, required= False,
199                            help="")
200       
201        return parser
Note: See TracBrowser for help on using the repository browser.