[1190] | 1 | import argparse |
---|
| 2 | import json |
---|
| 3 | import os |
---|
| 4 | import pickle |
---|
| 5 | import time |
---|
[1283] | 6 | import math |
---|
| 7 | import random |
---|
[1190] | 8 | from abc import ABC, abstractmethod |
---|
| 9 | |
---|
| 10 | from ..base.random_sequence_index import RandomIndexSequence |
---|
| 11 | from ..constants import BAD_FITNESS |
---|
| 12 | from ..json_encoders import Encoder |
---|
| 13 | from ..structures.hall_of_fame import HallOfFame |
---|
| 14 | from ..structures.individual import Individual |
---|
| 15 | from ..structures.population import PopulationStructures |
---|
| 16 | |
---|
| 17 | |
---|
| 18 | class ExperimentABC(ABC): |
---|
| 19 | |
---|
[1294] | 20 | def __init__(self, popsize, hof_size, save_only_best) -> None: |
---|
| 21 | self.population_structures = None |
---|
| 22 | self.stats = [] |
---|
| 23 | self.current_generation = 0 |
---|
| 24 | self.time_elapsed = 0 |
---|
[1190] | 25 | |
---|
| 26 | self.hof = HallOfFame(hof_size) |
---|
| 27 | self.popsize = popsize |
---|
| 28 | self.save_only_best = save_only_best |
---|
| 29 | |
---|
| 30 | def select(self, individuals, tournament_size, random_index_sequence): |
---|
| 31 | """Tournament selection, returns the index of the best individual from those taking part in the tournament""" |
---|
| 32 | best_index = None |
---|
| 33 | for i in range(tournament_size): |
---|
| 34 | rnd_index = random_index_sequence.getNext() |
---|
| 35 | if best_index is None or individuals[rnd_index].fitness > best_index.fitness: |
---|
| 36 | best_index = individuals[rnd_index] |
---|
| 37 | return best_index |
---|
| 38 | |
---|
| 39 | def addGenotypeIfValid(self, ind_list, genotype): |
---|
| 40 | new_individual = Individual() |
---|
| 41 | new_individual.set_and_evaluate(genotype, self.evaluate) |
---|
[1194] | 42 | if new_individual.fitness is not BAD_FITNESS: |
---|
[1190] | 43 | ind_list.append(new_individual) |
---|
| 44 | |
---|
[1283] | 45 | @staticmethod |
---|
| 46 | def stochastic_round(value): # https://en.wikipedia.org/wiki/Rounding#Stochastic_rounding |
---|
| 47 | # For example, value==2.1 should turn in most cases to int 2, rarely to int 3 |
---|
| 48 | lower = math.floor(value) # returns int |
---|
| 49 | return lower + (random.random() < (value - lower)) |
---|
| 50 | |
---|
[1190] | 51 | def make_new_population(self, individuals, prob_mut, prob_xov, tournament_size): |
---|
| 52 | """'individuals' is the input population (a list of individuals). |
---|
| 53 | Assumptions: all genotypes in 'individuals' are valid and evaluated (have fitness set). |
---|
[1194] | 54 | Returns: a new population of size 'self.popsize' with prob_mut mutants, prob_xov offspring, and the remainder of clones.""" |
---|
[1190] | 55 | |
---|
[1283] | 56 | # if (self.popsize * probability) below is not integer (e.g. popsize=50, prob_xov=0.333, expected number of crossovers = 50*0.333=16.65), stochastic_round() will ensure that you will get on average the expected number of crossovers per generation (e.g. 16.65: less often 16, more often 17). |
---|
| 57 | expected_mut = self.stochastic_round(self.popsize * prob_mut) # or int(...) if you accept less mutants in some cases, see the comment above |
---|
| 58 | expected_xov = self.stochastic_round(self.popsize * prob_xov) # or int(...) if you accept less crossovers in some cases, see the comment above |
---|
| 59 | assert expected_mut + expected_xov <= self.popsize, "If probabilities of mutation (%g) and crossover (%g) added together exceed 1.0, then the population would grow every generation..." % (prob_mut, prob_xov) # can be triggered due to stochastic_round() if prob_mut+prob_xov is close to 1 and the expected number of mutants or crossovers is not integer; if this happens, adjust popsize, prob_mut and prob_xov accordingly. |
---|
| 60 | |
---|
[1190] | 61 | newpop = [] |
---|
[1194] | 62 | ris = RandomIndexSequence(len(individuals)) |
---|
[1190] | 63 | |
---|
| 64 | # adding valid mutants of selected individuals... |
---|
| 65 | while len(newpop) < expected_mut: |
---|
[1194] | 66 | ind = self.select(individuals, tournament_size=tournament_size, random_index_sequence=ris) |
---|
[1190] | 67 | self.addGenotypeIfValid(newpop, self.mutate(ind.genotype)) |
---|
| 68 | |
---|
| 69 | # adding valid crossovers of selected individuals... |
---|
| 70 | while len(newpop) < expected_mut + expected_xov: |
---|
[1194] | 71 | ind1 = self.select(individuals, tournament_size=tournament_size, random_index_sequence=ris) |
---|
| 72 | ind2 = self.select(individuals, tournament_size=tournament_size, random_index_sequence=ris) |
---|
| 73 | self.addGenotypeIfValid(newpop, self.cross_over(ind1.genotype, ind2.genotype)) |
---|
[1190] | 74 | |
---|
| 75 | # select clones to fill up the new population until we reach the same size as the input population |
---|
[1194] | 76 | while len(newpop) < self.popsize: |
---|
| 77 | ind = self.select(individuals, tournament_size=tournament_size, random_index_sequence=ris) |
---|
[1190] | 78 | newpop.append(Individual().copyFrom(ind)) |
---|
| 79 | |
---|
| 80 | return newpop |
---|
| 81 | |
---|
| 82 | def save_state(self, state_filename): |
---|
| 83 | state = self.get_state() |
---|
| 84 | if state_filename is None: |
---|
| 85 | return |
---|
| 86 | state_filename_tmp = state_filename + ".tmp" |
---|
| 87 | try: |
---|
| 88 | with open(state_filename_tmp, "wb") as f: |
---|
| 89 | pickle.dump(state, f) |
---|
| 90 | # ensures the new file was first saved OK (e.g. enough free space on device), then replace |
---|
| 91 | os.replace(state_filename_tmp, state_filename) |
---|
| 92 | except Exception as ex: |
---|
| 93 | raise RuntimeError("Failed to save evolution state '%s' (because: %s). This does not prevent the experiment from continuing, but let's stop here to fix the problem with saving state files." % ( |
---|
| 94 | state_filename_tmp, ex)) |
---|
| 95 | |
---|
| 96 | def load_state(self, state_filename): |
---|
| 97 | if state_filename is None: |
---|
| 98 | # print("Loading evolution state: file name not provided") |
---|
| 99 | return None |
---|
| 100 | try: |
---|
| 101 | with open(state_filename, 'rb') as f: |
---|
| 102 | state = pickle.load(f) |
---|
| 103 | self.set_state(state) |
---|
| 104 | except FileNotFoundError: |
---|
| 105 | return None |
---|
| 106 | print("...Loaded evolution state from '%s'" % state_filename) |
---|
| 107 | return True |
---|
| 108 | |
---|
| 109 | def get_state_filename(self, save_file_name): |
---|
| 110 | return None if save_file_name is None else save_file_name + '_state.pkl' |
---|
| 111 | |
---|
| 112 | def get_state(self): |
---|
| 113 | return [self.time_elapsed, self.current_generation, self.population_structures, self.hof, self.stats] |
---|
| 114 | |
---|
| 115 | def set_state(self, state): |
---|
| 116 | self.time_elapsed, self.current_generation, self.population_structures, hof_, self.stats = state |
---|
| 117 | # sorting: ensure that we add from worst to best so all individuals are added to HOF |
---|
| 118 | for h in sorted(hof_, key=lambda x: x.rawfitness): |
---|
| 119 | self.hof.add(h) |
---|
| 120 | |
---|
| 121 | def update_stats(self, generation, all_individuals): |
---|
| 122 | worst = min(all_individuals, key=lambda item: item.rawfitness) |
---|
| 123 | best = max(all_individuals, key=lambda item: item.rawfitness) |
---|
| 124 | # instead of single best, could add all individuals in population here, but then the outcome would depend on the order of adding |
---|
| 125 | self.hof.add(best) |
---|
[1289] | 126 | self.stats.append(best.rawfitness if self.save_only_best else best) |
---|
| 127 | print("%d\t%d\t%g\t%g" % (generation, len(all_individuals), worst.rawfitness, best.rawfitness)) |
---|
[1190] | 128 | |
---|
| 129 | def initialize_evolution(self, initialgenotype): |
---|
| 130 | self.current_generation = 0 |
---|
| 131 | self.time_elapsed = 0 |
---|
| 132 | self.stats = [] # stores the best individuals, one from each generation |
---|
| 133 | initial_individual = Individual() |
---|
| 134 | initial_individual.set_and_evaluate(initialgenotype, self.evaluate) |
---|
| 135 | self.hof.add(initial_individual) |
---|
| 136 | self.stats.append( |
---|
| 137 | initial_individual.rawfitness if self.save_only_best else initial_individual) |
---|
| 138 | self.population_structures = PopulationStructures( |
---|
| 139 | initial_individual=initial_individual, archive_size=0, popsize=self.popsize) |
---|
| 140 | |
---|
| 141 | def evolve(self, hof_savefile, generations, initialgenotype, pmut, pxov, tournament_size): |
---|
| 142 | file_name = self.get_state_filename(hof_savefile) |
---|
| 143 | state = self.load_state(file_name) |
---|
| 144 | if state is not None: # loaded state from file |
---|
| 145 | # saved generation has been completed, start with the next one |
---|
| 146 | self.current_generation += 1 |
---|
[1289] | 147 | print("...Resuming from saved state: population size = %d, hof size = %d, stats size = %d, archive size = %d, generation = %d/%d" % (len(self.population_structures.population), len(self.hof), len(self.stats), (len(self.population_structures.archive)), self.current_generation, generations)) # self.current_generation (and g) are 0-based, parsed_args.generations is 1-based |
---|
[1190] | 148 | else: |
---|
| 149 | self.initialize_evolution(initialgenotype) |
---|
| 150 | time0 = time.process_time() |
---|
| 151 | for g in range(self.current_generation, generations): |
---|
| 152 | self.population_structures.population = self.make_new_population( |
---|
| 153 | self.population_structures.population, pmut, pxov, tournament_size) |
---|
| 154 | self.update_stats(g, self.population_structures.population) |
---|
| 155 | if hof_savefile is not None: |
---|
| 156 | self.current_generation = g |
---|
| 157 | self.time_elapsed += time.process_time() - time0 |
---|
| 158 | self.save_state(file_name) |
---|
| 159 | if hof_savefile is not None: |
---|
| 160 | self.save_genotypes(hof_savefile) |
---|
| 161 | return self.population_structures.population, self.stats |
---|
| 162 | |
---|
| 163 | @abstractmethod |
---|
| 164 | def mutate(self, gen1): |
---|
| 165 | pass |
---|
| 166 | |
---|
| 167 | @abstractmethod |
---|
| 168 | def cross_over(self, gen1, gen2): |
---|
| 169 | pass |
---|
| 170 | |
---|
| 171 | @abstractmethod |
---|
| 172 | def evaluate(self, genotype): |
---|
| 173 | pass |
---|
| 174 | |
---|
| 175 | def save_genotypes(self, filename): |
---|
| 176 | """Implement if you want to save finall genotypes,in default implementation this function is run once at the end of evolution""" |
---|
| 177 | state_to_save = { |
---|
| 178 | "number_of_generations": self.current_generation, |
---|
| 179 | "hof": [{"genotype": individual.genotype, |
---|
| 180 | "fitness": individual.rawfitness} for individual in self.hof.hof]} |
---|
| 181 | with open(f"{filename}.json", 'w') as f: |
---|
| 182 | json.dump(state_to_save, f, cls=Encoder) |
---|
| 183 | |
---|
| 184 | |
---|
| 185 | @staticmethod |
---|
| 186 | def get_args_for_parser(): |
---|
| 187 | parser = argparse.ArgumentParser() |
---|
[1289] | 188 | parser.add_argument('-popsize', type=int, default=50, |
---|
[1190] | 189 | help="Population size, default: 50.") |
---|
[1289] | 190 | parser.add_argument('-generations', type=int, default=5, |
---|
[1190] | 191 | help="Number of generations, default: 5.") |
---|
[1289] | 192 | parser.add_argument('-tournament', type=int, default=5, |
---|
[1190] | 193 | help="Tournament size, default: 5.") |
---|
[1289] | 194 | parser.add_argument('-pmut', type=float, default=0.7, |
---|
[1190] | 195 | help="Probability of mutation, default: 0.7") |
---|
[1289] | 196 | parser.add_argument('-pxov', type=float, default=0.2, |
---|
[1190] | 197 | help="Probability of crossover, default: 0.2") |
---|
[1289] | 198 | parser.add_argument('-hof_size', type=int, default=10, |
---|
[1190] | 199 | help="Number of genotypes in Hall of Fame. Default: 10.") |
---|
[1289] | 200 | parser.add_argument('-hof_savefile', type=str, required=False, |
---|
[1190] | 201 | help= 'If set, Hall of Fame will be saved in Framsticks file format (recommended extension *.gen. This also activates saving state (checpoint} file and auto-resuming from the saved state, if this file exists.') |
---|
[1289] | 202 | parser.add_argument('-save_only_best', type=bool, default=True, required=False, |
---|
[1190] | 203 | help="") |
---|
[1289] | 204 | parser.add_argument('-fitness_set_negative_to_zero', action='store_true', |
---|
| 205 | help="This flag forces fitness to become max(0,fitness), so it is always made non-negative. Using niching or novelty techniques without this flag (thus allowing negative fitness values) requires verifying/improving fitness diversification formulas to work as intended for both positive and negative fitness values.") |
---|
[1190] | 206 | |
---|
| 207 | return parser |
---|