1 | from typing import List # to be able to specify a type hint of list(something)
|
---|
2 | import json
|
---|
3 | import sys, os
|
---|
4 | import argparse
|
---|
5 | import numpy as np
|
---|
6 | import frams
|
---|
7 |
|
---|
8 |
|
---|
9 | class FramsticksLib:
|
---|
10 | """Communicates directly with Framsticks library (.dll or .so).
|
---|
11 | You can perform basic operations like mutation, crossover, and evaluation of genotypes.
|
---|
12 | This way you can perform evolution controlled by python as well as access and manipulate genotypes.
|
---|
13 | You can even design and use in evolution your own genetic representation implemented entirely in python,
|
---|
14 | or access and control the simulation and simulated creatures step by step.
|
---|
15 |
|
---|
16 | Should you want to modify or extend this class, first see and test the examples in frams-test.py.
|
---|
17 |
|
---|
18 | You need to provide one or two parameters when you run this class: the path to Framsticks where .dll/.so resides
|
---|
19 | and, optionally, the name of the Framsticks dll/so (if it is non-standard). See::
|
---|
20 | FramsticksLib.py -h"""
|
---|
21 |
|
---|
22 | PRINT_FRAMSTICKS_OUTPUT: bool = False # set to True for debugging
|
---|
23 | DETERMINISTIC: bool = False # set to True to have the same results in each run
|
---|
24 |
|
---|
25 | GENOTYPE_INVALID = "/*invalid*/" # this is how genotype invalidity is represented in Framsticks
|
---|
26 | EVALUATION_SETTINGS_FILE = "eval-allcriteria.sim" # MUST be compatible with the standard-eval expdef
|
---|
27 |
|
---|
28 |
|
---|
29 | # This function is not needed because in python, "For efficiency reasons, each module is only imported once per interpreter session."
|
---|
30 | # @staticmethod
|
---|
31 | # def getFramsModuleInstance():
|
---|
32 | # """If some other party needs access to the frams module to directly access or modify Framsticks objects,
|
---|
33 | # use this function to avoid importing the "frams" module multiple times and avoid potentially initializing
|
---|
34 | # it many times."""
|
---|
35 | # return frams
|
---|
36 |
|
---|
37 | def __init__(self, frams_path, frams_lib_name, simsettings):
|
---|
38 | if frams_lib_name is None:
|
---|
39 | frams.init(frams_path) # could add support for setting alternative directories using -D and -d
|
---|
40 | else:
|
---|
41 | frams.init(frams_path, "-L" + frams_lib_name) # could add support for setting alternative directories using -D and -d
|
---|
42 |
|
---|
43 | print('Available objects:', dir(frams))
|
---|
44 | print()
|
---|
45 |
|
---|
46 | print('Performing a basic test 1/2... ', end='')
|
---|
47 | simplest = self.getSimplest("1")
|
---|
48 | assert simplest == "X" and type(simplest) is str
|
---|
49 | print('OK.')
|
---|
50 | print('Performing a basic test 2/2... ', end='')
|
---|
51 | assert self.isValid(["X[0:0],", "X[0:0]", "X[1:0]"]) == [False, True, False]
|
---|
52 | print('OK.')
|
---|
53 | if not self.DETERMINISTIC:
|
---|
54 | frams.Math.randomize();
|
---|
55 | frams.Simulator.expdef = "standard-eval" # this expdef (or fully compatible) must be used by EVALUATION_SETTINGS_FILE
|
---|
56 | if simsettings is not None:
|
---|
57 | self.EVALUATION_SETTINGS_FILE = simsettings
|
---|
58 | frams.Simulator.ximport(self.EVALUATION_SETTINGS_FILE, 4 + 8 + 16)
|
---|
59 |
|
---|
60 |
|
---|
61 | def getSimplest(self, genetic_format) -> str:
|
---|
62 | return frams.GenMan.getSimplest(genetic_format).genotype._string()
|
---|
63 |
|
---|
64 |
|
---|
65 | def evaluate(self, genotype_list: List[str]):
|
---|
66 | """
|
---|
67 | Returns:
|
---|
68 | List of dictionaries containing the performance of genotypes evaluated using self.EVALUATION_SETTINGS_FILE.
|
---|
69 | Note that for whatever reason (e.g. incorrect genotype), the dictionaries you will get may be empty or
|
---|
70 | partially empty and may not have the fields you expected, so handle such cases properly.
|
---|
71 | """
|
---|
72 | assert isinstance(genotype_list, list) # because in python str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
|
---|
73 |
|
---|
74 | if not self.PRINT_FRAMSTICKS_OUTPUT:
|
---|
75 | ec = frams.MessageCatcher.new() # mute potential errors, warnings, messages
|
---|
76 |
|
---|
77 | frams.GenePools[0].clear()
|
---|
78 | for g in genotype_list:
|
---|
79 | frams.GenePools[0].add(g)
|
---|
80 | frams.ExpProperties.evalsavefile = "" # no need to store results in a file - we will get evaluations directly from Genotype's "data" field
|
---|
81 | frams.Simulator.init()
|
---|
82 | frams.Simulator.start()
|
---|
83 |
|
---|
84 | # step = frams.Simulator.step # cache reference to avoid repeated lookup in the loop (just for performance)
|
---|
85 | # while frams.Simulator.running._int(): # standard-eval.expdef sets running to 0 when the evaluation is complete
|
---|
86 | # step()
|
---|
87 | frams.Simulator.eval("while(Simulator.running) Simulator.step();") # fastest
|
---|
88 | # Timing for evaluating a single simple creature 100x:
|
---|
89 | # - python step without caching: 2.2s
|
---|
90 | # - python step with caching : 1.6s
|
---|
91 | # - pure FramScript and eval() : 0.4s
|
---|
92 |
|
---|
93 | if not self.PRINT_FRAMSTICKS_OUTPUT:
|
---|
94 | if ec.error_count._value() > 0: # errors are important and should not be ignored, at least display how many
|
---|
95 | print("[ERROR]", ec.error_count, "error(s) and", ec.warning_count, "warning(s) while evaluating", len(genotype_list), "genotype(s)")
|
---|
96 | ec.close()
|
---|
97 |
|
---|
98 | results = []
|
---|
99 | for g in frams.GenePools[0]:
|
---|
100 | serialized_dict = frams.String.serialize(g.data[frams.ExpProperties.evalsavedata._value()])
|
---|
101 | evaluations = json.loads(serialized_dict._string())
|
---|
102 | # now, for consistency with FramsticksCLI.py, add "num" and "name" keys that are missing because we got data directly from Genotype, not from the file produced by standard-eval.expdef's function printStats(). What we do below is what printStats() does.
|
---|
103 | result = {"num": g.num._value(), "name": g.name._value(), "evaluations": evaluations}
|
---|
104 | results.append(result)
|
---|
105 |
|
---|
106 | return results
|
---|
107 |
|
---|
108 |
|
---|
109 | def mutate(self, genotype_list: List[str]) -> List[str]:
|
---|
110 | """
|
---|
111 | Returns:
|
---|
112 | The genotype(s) of the mutated source genotype(s). self.GENOTYPE_INVALID for genotypes whose mutation failed (for example because the source genotype was invalid).
|
---|
113 | """
|
---|
114 | assert isinstance(genotype_list, list) # because in python str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
|
---|
115 |
|
---|
116 | mutated = []
|
---|
117 | for g in genotype_list:
|
---|
118 | mutated.append(frams.GenMan.mutate(frams.Geno.newFromString(g)).genotype._string())
|
---|
119 | assert len(genotype_list) == len(mutated), "Submitted %d genotypes, received %d validity values" % (len(genotype_list), len(mutated))
|
---|
120 | return mutated
|
---|
121 |
|
---|
122 |
|
---|
123 | def crossOver(self, genotype_parent1: str, genotype_parent2: str) -> str:
|
---|
124 | """
|
---|
125 | Returns:
|
---|
126 | The genotype of the offspring. self.GENOTYPE_INVALID if the crossing over failed.
|
---|
127 | """
|
---|
128 | return frams.GenMan.crossOver(frams.Geno.newFromString(genotype_parent1), frams.Geno.newFromString(genotype_parent2)).genotype._string()
|
---|
129 |
|
---|
130 |
|
---|
131 | def dissimilarity(self, genotype_list: List[str]) -> np.ndarray:
|
---|
132 | """
|
---|
133 | Returns:
|
---|
134 | A square array with dissimilarities of each pair of genotypes.
|
---|
135 | """
|
---|
136 | assert isinstance(genotype_list, list) # because in python str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
|
---|
137 |
|
---|
138 | # if you want to override what EVALUATION_SETTINGS_FILE sets, you can do it below:
|
---|
139 | # frams.SimilMeasure.simil_type = 1
|
---|
140 | # frams.SimilMeasureHungarian.simil_partgeom = 1
|
---|
141 | # frams.SimilMeasureHungarian.simil_weightedMDS = 1
|
---|
142 |
|
---|
143 | n = len(genotype_list)
|
---|
144 | square_matrix = np.zeros((n, n))
|
---|
145 | genos = [] # prepare an array of Geno objects so that we don't need to convert raw strings to Geno objects all the time in loops
|
---|
146 | for g in genotype_list:
|
---|
147 | genos.append(frams.Geno.newFromString(g))
|
---|
148 | frams_evaluateDistance = frams.SimilMeasure.evaluateDistance # cache function reference for better performance in loops
|
---|
149 | for i in range(n):
|
---|
150 | for j in range(n): # maybe calculate only one triangle if you really need a 2x speedup
|
---|
151 | square_matrix[i][j] = frams_evaluateDistance(genos[i], genos[j])._double()
|
---|
152 |
|
---|
153 | for i in range(n):
|
---|
154 | assert square_matrix[i][i] == 0, "Not a correct dissimilarity matrix, diagonal expected to be 0"
|
---|
155 | non_symmetric_diff = square_matrix - square_matrix.T
|
---|
156 | non_symmetric_count = np.count_nonzero(non_symmetric_diff)
|
---|
157 | if non_symmetric_count > 0:
|
---|
158 | non_symmetric_diff_abs = np.abs(non_symmetric_diff)
|
---|
159 | max_pos1d = np.argmax(non_symmetric_diff_abs) # location of largest discrepancy
|
---|
160 | max_pos2d_XY = np.unravel_index(max_pos1d, non_symmetric_diff_abs.shape) # 2D coordinates of largest discrepancy
|
---|
161 | max_pos2d_YX = max_pos2d_XY[1], max_pos2d_XY[0] # 2D coordinates of largest discrepancy mirror
|
---|
162 | worst_guy_XY = square_matrix[max_pos2d_XY] # this distance and the other below (its mirror) are most different
|
---|
163 | worst_guy_YX = square_matrix[max_pos2d_YX]
|
---|
164 | print("[WARN] Dissimilarity matrix: expecting symmetry, but %g out of %d pairs were asymmetrical, max difference was %g (%g %%)" %
|
---|
165 | (non_symmetric_count / 2,
|
---|
166 | n * (n - 1) / 2,
|
---|
167 | non_symmetric_diff_abs[max_pos2d_XY],
|
---|
168 | non_symmetric_diff_abs[max_pos2d_XY] * 100 / ((worst_guy_XY + worst_guy_YX) / 2))) # max diff is not necessarily max %
|
---|
169 | return square_matrix
|
---|
170 |
|
---|
171 |
|
---|
172 | def isValid(self, genotype_list: List[str]) -> List[bool]:
|
---|
173 | assert isinstance(genotype_list, list) # because in python str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
|
---|
174 | valid = []
|
---|
175 | for g in genotype_list:
|
---|
176 | valid.append(frams.Geno.newFromString(g).is_valid._int() == 1)
|
---|
177 | assert len(genotype_list) == len(valid), "Tested %d genotypes, received %d validity values" % (len(genotype_list), len(valid))
|
---|
178 | return valid
|
---|
179 |
|
---|
180 |
|
---|
181 | def parseArguments():
|
---|
182 | parser = argparse.ArgumentParser(description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[0])
|
---|
183 | parser.add_argument('-path', type=ensureDir, required=True, help='Path to the Framsticks library (.dll or .so) without trailing slash.')
|
---|
184 | parser.add_argument('-lib', required=False, help='Library name. If not given, "frams-objects.dll" or "frams-objects.so" is assumed depending on the platform.')
|
---|
185 | parser.add_argument('-simsettings', required=False, help='The name of the .sim file with settings for evaluation, mutation, crossover, and similarity estimation. If not given, "eval-allcriteria.sim" is assumed by default. Must be compatible with the "standard-eval" expdef.')
|
---|
186 | parser.add_argument('-genformat', required=False, help='Genetic format for the demo run, for example 4, 9, or S. If not given, f1 is assumed.')
|
---|
187 | return parser.parse_args()
|
---|
188 |
|
---|
189 |
|
---|
190 | def ensureDir(string):
|
---|
191 | if os.path.isdir(string):
|
---|
192 | return string
|
---|
193 | else:
|
---|
194 | raise NotADirectoryError(string)
|
---|
195 |
|
---|
196 |
|
---|
197 | if __name__ == "__main__":
|
---|
198 | # A demo run.
|
---|
199 |
|
---|
200 | # TODO ideas:
|
---|
201 | # - check_validity with three levels (invalid, corrected, valid)
|
---|
202 | # - a pool of binaries running simultaneously, balance load - in particular evaluation
|
---|
203 |
|
---|
204 | parsed_args = parseArguments()
|
---|
205 | framsLib = FramsticksLib(parsed_args.path, parsed_args.lib, parsed_args.simsettings)
|
---|
206 |
|
---|
207 | print("Sending a direct command to Framsticks library that calculates \"4\"+2 yields", frams.Simulator.eval("return \"4\"+2;"))
|
---|
208 |
|
---|
209 | simplest = framsLib.getSimplest('1' if parsed_args.genformat is None else parsed_args.genformat)
|
---|
210 | print("\tSimplest genotype:", simplest)
|
---|
211 | parent1 = framsLib.mutate([simplest])[0]
|
---|
212 | parent2 = parent1
|
---|
213 | MUTATE_COUNT = 10
|
---|
214 | for x in range(MUTATE_COUNT): # example of a chain of 10 mutations
|
---|
215 | parent2 = framsLib.mutate([parent2])[0]
|
---|
216 | print("\tParent1 (mutated simplest):", parent1)
|
---|
217 | print("\tParent2 (Parent1 mutated %d times):" % MUTATE_COUNT, parent2)
|
---|
218 | offspring = framsLib.crossOver(parent1, parent2)
|
---|
219 | print("\tCrossover (Offspring):", offspring)
|
---|
220 | print('\tDissimilarity of Parent1 and Offspring:', framsLib.dissimilarity([parent1, offspring])[0, 1])
|
---|
221 | print('\tPerformance of Offspring:', framsLib.evaluate([offspring]))
|
---|
222 | print('\tValidity of Parent1, Parent 2, and Offspring:', framsLib.isValid([parent1, parent2, offspring]))
|
---|