[1044] | 1 | /* |
---|
| 2 | emd.c |
---|
| 3 | |
---|
[1064] | 4 | Last update: 3/14/98 (but see emd.h for a list newer changes) |
---|
[1044] | 5 | |
---|
| 6 | An implementation of the Earth Movers Distance. |
---|
| 7 | Based of the solution for the Transportation problem as described in |
---|
| 8 | "Introduction to Mathematical Programming" by F. S. Hillier and |
---|
| 9 | G. J. Lieberman, McGraw-Hill, 1990. |
---|
| 10 | |
---|
| 11 | Copyright (C) 1998 Yossi Rubner |
---|
| 12 | Computer Science Department, Stanford University |
---|
[1063] | 13 | E-Mail: rubner@cs.stanford.edu URL: http://robotics.stanford.edu/~rubner/emd/default.htm |
---|
[1044] | 14 | */ |
---|
| 15 | |
---|
[1064] | 16 | // For a list of changes since 2020, see emd.h |
---|
| 17 | |
---|
[1044] | 18 | #include <stdio.h> |
---|
| 19 | #include <stdlib.h> |
---|
| 20 | #include <math.h> |
---|
| 21 | |
---|
| 22 | #include "emd.h" |
---|
| 23 | |
---|
| 24 | #define DEBUG_LEVEL 0 |
---|
| 25 | /* |
---|
| 26 | DEBUG_LEVEL: |
---|
| 27 | 0 = NO MESSAGES |
---|
| 28 | 1 = PRINT THE NUMBER OF ITERATIONS AND THE FINAL RESULT |
---|
| 29 | 2 = PRINT THE RESULT AFTER EVERY ITERATION |
---|
| 30 | 3 = PRINT ALSO THE FLOW AFTER EVERY ITERATION |
---|
| 31 | 4 = PRINT A LOT OF INFORMATION (PROBABLY USEFUL ONLY FOR THE AUTHOR) |
---|
| 32 | */ |
---|
| 33 | |
---|
| 34 | /* NEW TYPES DEFINITION */ |
---|
| 35 | |
---|
| 36 | /* node1_t IS USED FOR SINGLE-LINKED LISTS */ |
---|
| 37 | typedef struct node1_t { |
---|
| 38 | int i; |
---|
| 39 | double val; |
---|
| 40 | struct node1_t *Next; |
---|
| 41 | } node1_t; |
---|
| 42 | |
---|
| 43 | /* node1_t IS USED FOR DOUBLE-LINKED LISTS */ |
---|
| 44 | typedef struct node2_t { |
---|
| 45 | int i, j; |
---|
| 46 | double val; |
---|
| 47 | struct node2_t *NextC; /* NEXT COLUMN */ |
---|
| 48 | struct node2_t *NextR; /* NEXT ROW */ |
---|
| 49 | } node2_t; |
---|
| 50 | |
---|
| 51 | |
---|
| 52 | |
---|
| 53 | /* GLOBAL VARIABLE DECLARATION */ |
---|
[1062] | 54 | |
---|
[1044] | 55 | /* VARIABLES TO HANDLE _X EFFICIENTLY */ |
---|
| 56 | static node2_t *_EndX, *_EnterX; |
---|
| 57 | static double _maxW; |
---|
| 58 | static float _maxC; |
---|
| 59 | |
---|
| 60 | /* DECLARATION OF FUNCTIONS */ |
---|
| 61 | static float init(signature_t *Signature1, signature_t *Signature2, |
---|
[1062] | 62 | float (*Dist)(feature_t *, feature_t *), int _n1, int _n2, |
---|
| 63 | float **_CM, node2_t *_XV, char **_IsX, node2_t **_RowsX, node2_t **_ColsX); |
---|
| 64 | static void findBasicVariables(node1_t *U, node1_t *V, int _n1, int _n2, float **_CM, char **_IsX); |
---|
| 65 | static int isOptimal(node1_t *U, node1_t *V, int _n1, int _n2, float **_CM, char **_IsX); |
---|
| 66 | static int findLoop(node2_t **Loop, int _n1, int _n2, node2_t *_XV, node2_t **_RowsX, node2_t **_ColsX); |
---|
| 67 | static void newSol(int _n1, int _n2, node2_t *_XV, char **_IsX, node2_t **_RowsX, node2_t **_ColsX); |
---|
| 68 | static void russel(double *S, double *D, int _n1, int _n2, float **_CM, char **_IsX, node2_t **_RowsX, node2_t **_ColsX); |
---|
[1044] | 69 | static void addBasicVariable(int minI, int minJ, double *S, double *D, |
---|
| 70 | node1_t *PrevUMinI, node1_t *PrevVMinJ, |
---|
[1062] | 71 | node1_t *UHead, char **_IsX, node2_t **_RowsX, node2_t **_ColsX); |
---|
[1044] | 72 | #if DEBUG_LEVEL > 0 |
---|
| 73 | static void printSolution(); |
---|
| 74 | #endif |
---|
| 75 | |
---|
| 76 | |
---|
| 77 | /****************************************************************************** |
---|
| 78 | float emd(signature_t *Signature1, signature_t *Signature2, |
---|
| 79 | float (*Dist)(feature_t *, feature_t *), flow_t *Flow, int *FlowSize) |
---|
| 80 | |
---|
| 81 | where |
---|
| 82 | |
---|
| 83 | Signature1, Signature2 Pointers to signatures that their distance we want |
---|
| 84 | to compute. |
---|
| 85 | Dist Pointer to the ground distance. i.e. the function that computes |
---|
| 86 | the distance between two features. |
---|
| 87 | Flow (Optional) Pointer to a vector of flow_t (defined in emd.h) |
---|
| 88 | where the resulting flow will be stored. Flow must have n1+n2-1 |
---|
| 89 | elements, where n1 and n2 are the sizes of the two signatures |
---|
| 90 | respectively. |
---|
| 91 | If NULL, the flow is not returned. |
---|
| 92 | FlowSize (Optional) Pointer to an integer where the number of elements in |
---|
| 93 | Flow will be stored |
---|
| 94 | |
---|
| 95 | ******************************************************************************/ |
---|
| 96 | |
---|
| 97 | float emd(signature_t *Signature1, signature_t *Signature2, |
---|
| 98 | float (*Dist)(feature_t *, feature_t *), |
---|
[1062] | 99 | flow_t *Flow, int *FlowSize, int _n1, int _n2) |
---|
[1044] | 100 | { |
---|
| 101 | int itr; |
---|
[1064] | 102 | int max_n = max(_n1, _n2); //max_n was introduced in r1062 instead of the #defined constant MAX_SIG_SIZE1=1000 in the original implementation. max_n is better than the constant, but it would be even better to use either _n1 or _n2, if we only knew what size each individual array should precisely have. |
---|
[1044] | 103 | double totalCost; |
---|
| 104 | float w; |
---|
| 105 | node2_t *XP; |
---|
| 106 | flow_t *FlowP; |
---|
[1064] | 107 | node1_t *U=new node1_t[max_n], *V=new node1_t[max_n]; |
---|
[1062] | 108 | /* THE COST MATRIX */ |
---|
| 109 | float** _CM = new float*[_n1]; |
---|
| 110 | char** _IsX = new char*[_n1]; |
---|
| 111 | for(int k = 0; k < _n1; ++k) |
---|
| 112 | { |
---|
| 113 | _CM[k] = new float[_n2]; |
---|
| 114 | _IsX[k] = new char[_n2]; |
---|
| 115 | } |
---|
| 116 | /* THE BASIC VARIABLES VECTOR */ |
---|
| 117 | node2_t *_XV = new node2_t[max_n*2]; |
---|
| 118 | node2_t **_RowsX = new node2_t*[max_n*2]; |
---|
| 119 | node2_t **_ColsX = new node2_t*[max_n*2]; |
---|
| 120 | |
---|
| 121 | w = init(Signature1, Signature2, Dist, _n1, _n2, _CM, _XV, _IsX, _RowsX, _ColsX); |
---|
[1044] | 122 | |
---|
| 123 | #if DEBUG_LEVEL > 1 |
---|
| 124 | printf("\nINITIAL SOLUTION:\n"); |
---|
| 125 | printSolution(); |
---|
| 126 | #endif |
---|
| 127 | |
---|
| 128 | if (_n1 > 1 && _n2 > 1) /* IF _n1 = 1 OR _n2 = 1 THEN WE ARE DONE */ |
---|
| 129 | { |
---|
| 130 | for (itr = 1; itr < MAX_ITERATIONS; itr++) |
---|
| 131 | { |
---|
| 132 | /* FIND BASIC VARIABLES */ |
---|
[1062] | 133 | findBasicVariables(U, V, _n1, _n2, _CM, _IsX); |
---|
[1044] | 134 | |
---|
| 135 | /* CHECK FOR OPTIMALITY */ |
---|
[1062] | 136 | if (isOptimal(U, V, _n1, _n2, _CM, _IsX)) |
---|
[1044] | 137 | break; |
---|
| 138 | |
---|
| 139 | /* IMPROVE SOLUTION */ |
---|
[1062] | 140 | newSol(_n1, _n2, _XV, _IsX, _RowsX, _ColsX); |
---|
[1044] | 141 | |
---|
| 142 | #if DEBUG_LEVEL > 1 |
---|
| 143 | printf("\nITERATION # %d \n", itr); |
---|
| 144 | printSolution(); |
---|
| 145 | #endif |
---|
| 146 | } |
---|
| 147 | |
---|
| 148 | if (itr == MAX_ITERATIONS) |
---|
| 149 | fprintf(stderr, "emd: Maximum number of iterations has been reached (%d)\n", |
---|
| 150 | MAX_ITERATIONS); |
---|
| 151 | } |
---|
| 152 | |
---|
| 153 | /* COMPUTE THE TOTAL FLOW */ |
---|
| 154 | totalCost = 0; |
---|
| 155 | if (Flow != NULL) |
---|
| 156 | FlowP = Flow; |
---|
[1050] | 157 | for(XP=_XV; XP < _EndX; XP++) |
---|
[1044] | 158 | { |
---|
| 159 | if (XP == _EnterX) /* _EnterX IS THE EMPTY SLOT */ |
---|
| 160 | continue; |
---|
| 161 | if (XP->i == Signature1->n || XP->j == Signature2->n) /* DUMMY FEATURE */ |
---|
| 162 | continue; |
---|
| 163 | |
---|
| 164 | if (XP->val == 0) /* ZERO FLOW */ |
---|
| 165 | continue; |
---|
| 166 | |
---|
[1050] | 167 | totalCost += (double)XP->val * _CM[XP->i][XP->j]; |
---|
[1044] | 168 | if (Flow != NULL) |
---|
| 169 | { |
---|
| 170 | FlowP->from = XP->i; |
---|
| 171 | FlowP->to = XP->j; |
---|
| 172 | FlowP->amount = XP->val; |
---|
| 173 | FlowP++; |
---|
| 174 | } |
---|
| 175 | } |
---|
| 176 | if (Flow != NULL) |
---|
| 177 | *FlowSize = FlowP-Flow; |
---|
| 178 | |
---|
| 179 | #if DEBUG_LEVEL > 0 |
---|
| 180 | printf("\n*** OPTIMAL SOLUTION (%d ITERATIONS): %f ***\n", itr, totalCost); |
---|
| 181 | #endif |
---|
| 182 | |
---|
[1062] | 183 | for(int k = 0; k < _n1; ++k) |
---|
| 184 | { |
---|
| 185 | delete[] _CM[k]; |
---|
| 186 | delete[] _IsX[k]; |
---|
| 187 | } |
---|
| 188 | delete[] _CM; |
---|
| 189 | delete[] _IsX; |
---|
| 190 | delete[] _XV; |
---|
| 191 | delete[] _RowsX; |
---|
| 192 | delete[] _ColsX; |
---|
[1064] | 193 | |
---|
| 194 | delete[] U; |
---|
| 195 | delete[] V; |
---|
[1062] | 196 | |
---|
| 197 | /* RETURN THE NORMALIZED COST == EMD */ |
---|
[1044] | 198 | return (float)(totalCost / w); |
---|
| 199 | } |
---|
| 200 | |
---|
| 201 | |
---|
| 202 | |
---|
| 203 | |
---|
| 204 | |
---|
| 205 | /********************** |
---|
| 206 | init |
---|
| 207 | **********************/ |
---|
| 208 | static float init(signature_t *Signature1, signature_t *Signature2, |
---|
[1062] | 209 | float (*Dist)(feature_t *, feature_t *), int _n1, int _n2, |
---|
| 210 | float **_CM, node2_t *_XV, char **_IsX, node2_t **_RowsX, node2_t **_ColsX) |
---|
[1044] | 211 | { |
---|
| 212 | int i, j; |
---|
[1064] | 213 | int max_n = max(_n1, _n2); //max_n was introduced in r1062 instead of the #defined constant MAX_SIG_SIZE1=1000 in the original implementation. max_n is better than the constant, but it would be even better to use either _n1 or _n2, if we only knew what size each individual array should precisely have. |
---|
[1044] | 214 | double sSum, dSum, diff; |
---|
| 215 | feature_t *P1, *P2; |
---|
[1064] | 216 | double *S=new double[max_n], *D=new double[max_n]; |
---|
[1044] | 217 | |
---|
| 218 | |
---|
| 219 | /* COMPUTE THE DISTANCE MATRIX */ |
---|
| 220 | _maxC = 0; |
---|
| 221 | for(i=0, P1=Signature1->Features; i < _n1; i++, P1++) |
---|
| 222 | for(j=0, P2=Signature2->Features; j < _n2; j++, P2++) |
---|
| 223 | { |
---|
[1050] | 224 | _CM[i][j] = Dist(P1, P2); |
---|
| 225 | if (_CM[i][j] > _maxC) |
---|
| 226 | _maxC = _CM[i][j]; |
---|
[1044] | 227 | } |
---|
| 228 | |
---|
| 229 | /* SUM UP THE SUPPLY AND DEMAND */ |
---|
| 230 | sSum = 0.0; |
---|
| 231 | for(i=0; i < _n1; i++) |
---|
| 232 | { |
---|
| 233 | S[i] = Signature1->Weights[i]; |
---|
| 234 | sSum += Signature1->Weights[i]; |
---|
| 235 | _RowsX[i] = NULL; |
---|
| 236 | } |
---|
| 237 | dSum = 0.0; |
---|
| 238 | for(j=0; j < _n2; j++) |
---|
| 239 | { |
---|
| 240 | D[j] = Signature2->Weights[j]; |
---|
| 241 | dSum += Signature2->Weights[j]; |
---|
| 242 | _ColsX[j] = NULL; |
---|
| 243 | } |
---|
| 244 | |
---|
| 245 | /* IF SUPPLY DIFFERENT THAN THE DEMAND, ADD A ZERO-COST DUMMY CLUSTER */ |
---|
| 246 | diff = sSum - dSum; |
---|
| 247 | if (fabs(diff) >= EPSILON * sSum) |
---|
| 248 | { |
---|
| 249 | if (diff < 0.0) |
---|
| 250 | { |
---|
| 251 | for (j=0; j < _n2; j++) |
---|
[1050] | 252 | _CM[_n1][j] = 0; |
---|
[1044] | 253 | S[_n1] = -diff; |
---|
| 254 | _RowsX[_n1] = NULL; |
---|
| 255 | _n1++; |
---|
| 256 | } |
---|
| 257 | else |
---|
| 258 | { |
---|
| 259 | for (i=0; i < _n1; i++) |
---|
[1050] | 260 | _CM[i][_n2] = 0; |
---|
[1044] | 261 | D[_n2] = diff; |
---|
| 262 | _ColsX[_n2] = NULL; |
---|
| 263 | _n2++; |
---|
| 264 | } |
---|
| 265 | } |
---|
| 266 | |
---|
| 267 | /* INITIALIZE THE BASIC VARIABLE STRUCTURES */ |
---|
| 268 | for (i=0; i < _n1; i++) |
---|
| 269 | for (j=0; j < _n2; j++) |
---|
| 270 | _IsX[i][j] = 0; |
---|
[1050] | 271 | _EndX = _XV; |
---|
[1044] | 272 | |
---|
| 273 | _maxW = sSum > dSum ? sSum : dSum; |
---|
| 274 | |
---|
| 275 | /* FIND INITIAL SOLUTION */ |
---|
[1062] | 276 | russel(S, D, _n1, _n2, _CM, _IsX, _RowsX, _ColsX); |
---|
[1044] | 277 | |
---|
| 278 | _EnterX = _EndX++; /* AN EMPTY SLOT (ONLY _n1+_n2-1 BASIC VARIABLES) */ |
---|
| 279 | |
---|
[1064] | 280 | delete[] S; |
---|
| 281 | delete[] D; |
---|
| 282 | |
---|
[1044] | 283 | return sSum > dSum ? dSum : sSum; |
---|
| 284 | } |
---|
| 285 | |
---|
| 286 | |
---|
| 287 | /********************** |
---|
| 288 | findBasicVariables |
---|
| 289 | **********************/ |
---|
[1062] | 290 | static void findBasicVariables(node1_t *U, node1_t *V, int _n1, int _n2, float **_CM, char **_IsX) |
---|
[1044] | 291 | { |
---|
| 292 | int i, j, found; |
---|
| 293 | int UfoundNum, VfoundNum; |
---|
| 294 | node1_t u0Head, u1Head, *CurU, *PrevU; |
---|
| 295 | node1_t v0Head, v1Head, *CurV, *PrevV; |
---|
| 296 | |
---|
| 297 | /* INITIALIZE THE ROWS LIST (U) AND THE COLUMNS LIST (V) */ |
---|
| 298 | u0Head.Next = CurU = U; |
---|
| 299 | for (i=0; i < _n1; i++) |
---|
| 300 | { |
---|
| 301 | CurU->i = i; |
---|
| 302 | CurU->Next = CurU+1; |
---|
| 303 | CurU++; |
---|
| 304 | } |
---|
| 305 | (--CurU)->Next = NULL; |
---|
| 306 | u1Head.Next = NULL; |
---|
| 307 | |
---|
| 308 | CurV = V+1; |
---|
| 309 | v0Head.Next = _n2 > 1 ? V+1 : NULL; |
---|
| 310 | for (j=1; j < _n2; j++) |
---|
| 311 | { |
---|
| 312 | CurV->i = j; |
---|
| 313 | CurV->Next = CurV+1; |
---|
| 314 | CurV++; |
---|
| 315 | } |
---|
| 316 | (--CurV)->Next = NULL; |
---|
| 317 | v1Head.Next = NULL; |
---|
| 318 | |
---|
| 319 | /* THERE ARE _n1+_n2 VARIABLES BUT ONLY _n1+_n2-1 INDEPENDENT EQUATIONS, |
---|
| 320 | SO SET V[0]=0 */ |
---|
| 321 | V[0].i = 0; |
---|
| 322 | V[0].val = 0; |
---|
| 323 | v1Head.Next = V; |
---|
| 324 | v1Head.Next->Next = NULL; |
---|
| 325 | |
---|
| 326 | /* LOOP UNTIL ALL VARIABLES ARE FOUND */ |
---|
| 327 | UfoundNum=VfoundNum=0; |
---|
| 328 | while (UfoundNum < _n1 || VfoundNum < _n2) |
---|
| 329 | { |
---|
| 330 | |
---|
| 331 | #if DEBUG_LEVEL > 3 |
---|
| 332 | printf("UfoundNum=%d/%d,VfoundNum=%d/%d\n",UfoundNum,_n1,VfoundNum,_n2); |
---|
| 333 | printf("U0="); |
---|
| 334 | for(CurU = u0Head.Next; CurU != NULL; CurU = CurU->Next) |
---|
| 335 | printf("[%d]",CurU-U); |
---|
| 336 | printf("\n"); |
---|
| 337 | printf("U1="); |
---|
| 338 | for(CurU = u1Head.Next; CurU != NULL; CurU = CurU->Next) |
---|
| 339 | printf("[%d]",CurU-U); |
---|
| 340 | printf("\n"); |
---|
| 341 | printf("V0="); |
---|
| 342 | for(CurV = v0Head.Next; CurV != NULL; CurV = CurV->Next) |
---|
| 343 | printf("[%d]",CurV-V); |
---|
| 344 | printf("\n"); |
---|
| 345 | printf("V1="); |
---|
| 346 | for(CurV = v1Head.Next; CurV != NULL; CurV = CurV->Next) |
---|
| 347 | printf("[%d]",CurV-V); |
---|
| 348 | printf("\n\n"); |
---|
| 349 | #endif |
---|
| 350 | |
---|
| 351 | found = 0; |
---|
| 352 | if (VfoundNum < _n2) |
---|
| 353 | { |
---|
| 354 | /* LOOP OVER ALL MARKED COLUMNS */ |
---|
| 355 | PrevV = &v1Head; |
---|
| 356 | for (CurV=v1Head.Next; CurV != NULL; CurV=CurV->Next) |
---|
| 357 | { |
---|
| 358 | j = CurV->i; |
---|
| 359 | /* FIND THE VARIABLES IN COLUMN j */ |
---|
| 360 | PrevU = &u0Head; |
---|
| 361 | for (CurU=u0Head.Next; CurU != NULL; CurU=CurU->Next) |
---|
| 362 | { |
---|
| 363 | i = CurU->i; |
---|
| 364 | if (_IsX[i][j]) |
---|
| 365 | { |
---|
| 366 | /* COMPUTE U[i] */ |
---|
[1050] | 367 | CurU->val = _CM[i][j] - CurV->val; |
---|
[1044] | 368 | /* ...AND ADD IT TO THE MARKED LIST */ |
---|
| 369 | PrevU->Next = CurU->Next; |
---|
| 370 | CurU->Next = u1Head.Next != NULL ? u1Head.Next : NULL; |
---|
| 371 | u1Head.Next = CurU; |
---|
| 372 | CurU = PrevU; |
---|
| 373 | } |
---|
| 374 | else |
---|
| 375 | PrevU = CurU; |
---|
| 376 | } |
---|
| 377 | PrevV->Next = CurV->Next; |
---|
| 378 | VfoundNum++; |
---|
| 379 | found = 1; |
---|
| 380 | } |
---|
| 381 | } |
---|
| 382 | if (UfoundNum < _n1) |
---|
| 383 | { |
---|
| 384 | /* LOOP OVER ALL MARKED ROWS */ |
---|
| 385 | PrevU = &u1Head; |
---|
| 386 | for (CurU=u1Head.Next; CurU != NULL; CurU=CurU->Next) |
---|
| 387 | { |
---|
| 388 | i = CurU->i; |
---|
| 389 | /* FIND THE VARIABLES IN ROWS i */ |
---|
| 390 | PrevV = &v0Head; |
---|
| 391 | for (CurV=v0Head.Next; CurV != NULL; CurV=CurV->Next) |
---|
| 392 | { |
---|
| 393 | j = CurV->i; |
---|
| 394 | if (_IsX[i][j]) |
---|
| 395 | { |
---|
| 396 | /* COMPUTE V[j] */ |
---|
[1050] | 397 | CurV->val = _CM[i][j] - CurU->val; |
---|
[1044] | 398 | /* ...AND ADD IT TO THE MARKED LIST */ |
---|
| 399 | PrevV->Next = CurV->Next; |
---|
| 400 | CurV->Next = v1Head.Next != NULL ? v1Head.Next: NULL; |
---|
| 401 | v1Head.Next = CurV; |
---|
| 402 | CurV = PrevV; |
---|
| 403 | } |
---|
| 404 | else |
---|
| 405 | PrevV = CurV; |
---|
| 406 | } |
---|
| 407 | PrevU->Next = CurU->Next; |
---|
| 408 | UfoundNum++; |
---|
| 409 | found = 1; |
---|
| 410 | } |
---|
| 411 | } |
---|
| 412 | if (! found) |
---|
| 413 | { |
---|
| 414 | fprintf(stderr, "emd: Unexpected error in findBasicVariables!\n"); |
---|
| 415 | fprintf(stderr, "This typically happens when the EPSILON defined in\n"); |
---|
| 416 | fprintf(stderr, "emd.h is not right for the scale of the problem.\n"); |
---|
| 417 | exit(1); |
---|
| 418 | } |
---|
| 419 | } |
---|
| 420 | } |
---|
| 421 | |
---|
| 422 | |
---|
| 423 | |
---|
| 424 | |
---|
| 425 | /********************** |
---|
| 426 | isOptimal |
---|
| 427 | **********************/ |
---|
[1062] | 428 | static int isOptimal(node1_t *U, node1_t *V, int _n1, int _n2, float **_CM, char **_IsX) |
---|
[1044] | 429 | { |
---|
| 430 | double delta, deltaMin; |
---|
| 431 | int i, j, minI, minJ; |
---|
| 432 | |
---|
| 433 | /* FIND THE MINIMAL Cij-Ui-Vj OVER ALL i,j */ |
---|
| 434 | deltaMin = INFINITY; |
---|
| 435 | for(i=0; i < _n1; i++) |
---|
| 436 | for(j=0; j < _n2; j++) |
---|
| 437 | if (! _IsX[i][j]) |
---|
| 438 | { |
---|
[1050] | 439 | delta = _CM[i][j] - U[i].val - V[j].val; |
---|
[1044] | 440 | if (deltaMin > delta) |
---|
| 441 | { |
---|
| 442 | deltaMin = delta; |
---|
| 443 | minI = i; |
---|
| 444 | minJ = j; |
---|
| 445 | } |
---|
| 446 | } |
---|
| 447 | |
---|
| 448 | #if DEBUG_LEVEL > 3 |
---|
| 449 | printf("deltaMin=%f\n", deltaMin); |
---|
| 450 | #endif |
---|
| 451 | |
---|
| 452 | if (deltaMin == INFINITY) |
---|
| 453 | { |
---|
| 454 | fprintf(stderr, "emd: Unexpected error in isOptimal.\n"); |
---|
| 455 | exit(0); |
---|
| 456 | } |
---|
| 457 | |
---|
| 458 | _EnterX->i = minI; |
---|
| 459 | _EnterX->j = minJ; |
---|
| 460 | |
---|
| 461 | /* IF NO NEGATIVE deltaMin, WE FOUND THE OPTIMAL SOLUTION */ |
---|
| 462 | return deltaMin >= -EPSILON * _maxC; |
---|
| 463 | |
---|
| 464 | /* |
---|
| 465 | return deltaMin >= -EPSILON; |
---|
| 466 | */ |
---|
| 467 | } |
---|
| 468 | |
---|
| 469 | |
---|
| 470 | /********************** |
---|
| 471 | newSol |
---|
| 472 | **********************/ |
---|
[1062] | 473 | static void newSol(int _n1, int _n2, node2_t * _XV, char **_IsX, node2_t **_RowsX, node2_t **_ColsX) |
---|
[1044] | 474 | { |
---|
[1064] | 475 | int i, j, k; |
---|
| 476 | int max_n = max(_n1, _n2); //max_n was introduced in r1062 instead of the #defined constant MAX_SIG_SIZE1=1000 in the original implementation. max_n is better than the constant, but it would be even better to use either _n1 or _n2, if we only knew what size each individual array should precisely have. |
---|
[1044] | 477 | double xMin; |
---|
| 478 | int steps; |
---|
[1064] | 479 | node2_t **Loop=new node2_t*[2*max_n], *CurX, *LeaveX; |
---|
[1044] | 480 | |
---|
| 481 | #if DEBUG_LEVEL > 3 |
---|
| 482 | printf("EnterX = (%d,%d)\n", _EnterX->i, _EnterX->j); |
---|
| 483 | #endif |
---|
| 484 | |
---|
| 485 | /* ENTER THE NEW BASIC VARIABLE */ |
---|
| 486 | i = _EnterX->i; |
---|
| 487 | j = _EnterX->j; |
---|
| 488 | _IsX[i][j] = 1; |
---|
| 489 | _EnterX->NextC = _RowsX[i]; |
---|
| 490 | _EnterX->NextR = _ColsX[j]; |
---|
| 491 | _EnterX->val = 0; |
---|
| 492 | _RowsX[i] = _EnterX; |
---|
| 493 | _ColsX[j] = _EnterX; |
---|
| 494 | |
---|
| 495 | /* FIND A CHAIN REACTION */ |
---|
[1062] | 496 | steps = findLoop(Loop, _n1, _n2, _XV, _RowsX, _ColsX); |
---|
[1044] | 497 | |
---|
| 498 | /* FIND THE LARGEST VALUE IN THE LOOP */ |
---|
| 499 | xMin = INFINITY; |
---|
| 500 | for (k=1; k < steps; k+=2) |
---|
| 501 | { |
---|
| 502 | if (Loop[k]->val < xMin) |
---|
| 503 | { |
---|
| 504 | LeaveX = Loop[k]; |
---|
| 505 | xMin = Loop[k]->val; |
---|
| 506 | } |
---|
| 507 | } |
---|
| 508 | |
---|
| 509 | /* UPDATE THE LOOP */ |
---|
| 510 | for (k=0; k < steps; k+=2) |
---|
| 511 | { |
---|
| 512 | Loop[k]->val += xMin; |
---|
| 513 | Loop[k+1]->val -= xMin; |
---|
| 514 | } |
---|
| 515 | |
---|
| 516 | #if DEBUG_LEVEL > 3 |
---|
| 517 | printf("LeaveX = (%d,%d)\n", LeaveX->i, LeaveX->j); |
---|
| 518 | #endif |
---|
| 519 | |
---|
| 520 | /* REMOVE THE LEAVING BASIC VARIABLE */ |
---|
| 521 | i = LeaveX->i; |
---|
| 522 | j = LeaveX->j; |
---|
| 523 | _IsX[i][j] = 0; |
---|
| 524 | if (_RowsX[i] == LeaveX) |
---|
| 525 | _RowsX[i] = LeaveX->NextC; |
---|
| 526 | else |
---|
| 527 | for (CurX=_RowsX[i]; CurX != NULL; CurX = CurX->NextC) |
---|
| 528 | if (CurX->NextC == LeaveX) |
---|
| 529 | { |
---|
| 530 | CurX->NextC = CurX->NextC->NextC; |
---|
| 531 | break; |
---|
| 532 | } |
---|
| 533 | if (_ColsX[j] == LeaveX) |
---|
| 534 | _ColsX[j] = LeaveX->NextR; |
---|
| 535 | else |
---|
| 536 | for (CurX=_ColsX[j]; CurX != NULL; CurX = CurX->NextR) |
---|
| 537 | if (CurX->NextR == LeaveX) |
---|
| 538 | { |
---|
| 539 | CurX->NextR = CurX->NextR->NextR; |
---|
| 540 | break; |
---|
| 541 | } |
---|
| 542 | |
---|
| 543 | /* SET _EnterX TO BE THE NEW EMPTY SLOT */ |
---|
| 544 | _EnterX = LeaveX; |
---|
[1064] | 545 | |
---|
| 546 | delete[] Loop; |
---|
[1044] | 547 | } |
---|
| 548 | |
---|
| 549 | |
---|
| 550 | |
---|
| 551 | /********************** |
---|
| 552 | findLoop |
---|
| 553 | **********************/ |
---|
[1062] | 554 | static int findLoop(node2_t **Loop, int _n1, int _n2, node2_t *_XV, node2_t **_RowsX, node2_t **_ColsX) |
---|
[1044] | 555 | { |
---|
[1064] | 556 | int i, steps; |
---|
| 557 | int max_n = max(_n1, _n2); //max_n was introduced in r1062 instead of the #defined constant MAX_SIG_SIZE1=1000 in the original implementation. max_n is better than the constant, but it would be even better to use either _n1 or _n2, if we only knew what size each individual array should precisely have. |
---|
[1044] | 558 | node2_t **CurX, *NewX; |
---|
[1064] | 559 | char *IsUsed=new char[2*max_n]; |
---|
[1044] | 560 | |
---|
| 561 | for (i=0; i < _n1+_n2; i++) |
---|
| 562 | IsUsed[i] = 0; |
---|
| 563 | |
---|
| 564 | CurX = Loop; |
---|
| 565 | NewX = *CurX = _EnterX; |
---|
[1050] | 566 | IsUsed[_EnterX-_XV] = 1; |
---|
[1044] | 567 | steps = 1; |
---|
| 568 | |
---|
| 569 | do |
---|
| 570 | { |
---|
| 571 | if (steps%2 == 1) |
---|
| 572 | { |
---|
| 573 | /* FIND AN UNUSED X IN THE ROW */ |
---|
| 574 | NewX = _RowsX[NewX->i]; |
---|
[1050] | 575 | while (NewX != NULL && IsUsed[NewX-_XV]) |
---|
[1044] | 576 | NewX = NewX->NextC; |
---|
| 577 | } |
---|
| 578 | else |
---|
| 579 | { |
---|
| 580 | /* FIND AN UNUSED X IN THE COLUMN, OR THE ENTERING X */ |
---|
| 581 | NewX = _ColsX[NewX->j]; |
---|
[1050] | 582 | while (NewX != NULL && IsUsed[NewX-_XV] && NewX != _EnterX) |
---|
[1044] | 583 | NewX = NewX->NextR; |
---|
| 584 | if (NewX == _EnterX) |
---|
| 585 | break; |
---|
| 586 | } |
---|
| 587 | |
---|
| 588 | if (NewX != NULL) /* FOUND THE NEXT X */ |
---|
| 589 | { |
---|
| 590 | /* ADD X TO THE LOOP */ |
---|
| 591 | *++CurX = NewX; |
---|
[1050] | 592 | IsUsed[NewX-_XV] = 1; |
---|
[1044] | 593 | steps++; |
---|
| 594 | #if DEBUG_LEVEL > 3 |
---|
| 595 | printf("steps=%d, NewX=(%d,%d)\n", steps, NewX->i, NewX->j); |
---|
| 596 | #endif |
---|
| 597 | } |
---|
| 598 | else /* DIDN'T FIND THE NEXT X */ |
---|
| 599 | { |
---|
| 600 | /* BACKTRACK */ |
---|
| 601 | do |
---|
| 602 | { |
---|
| 603 | NewX = *CurX; |
---|
| 604 | do |
---|
| 605 | { |
---|
| 606 | if (steps%2 == 1) |
---|
| 607 | NewX = NewX->NextR; |
---|
| 608 | else |
---|
| 609 | NewX = NewX->NextC; |
---|
[1050] | 610 | } while (NewX != NULL && IsUsed[NewX-_XV]); |
---|
[1044] | 611 | |
---|
| 612 | if (NewX == NULL) |
---|
| 613 | { |
---|
[1050] | 614 | IsUsed[*CurX-_XV] = 0; |
---|
[1044] | 615 | CurX--; |
---|
| 616 | steps--; |
---|
| 617 | } |
---|
| 618 | } while (NewX == NULL && CurX >= Loop); |
---|
| 619 | |
---|
| 620 | #if DEBUG_LEVEL > 3 |
---|
| 621 | printf("BACKTRACKING TO: steps=%d, NewX=(%d,%d)\n", |
---|
| 622 | steps, NewX->i, NewX->j); |
---|
| 623 | #endif |
---|
[1050] | 624 | IsUsed[*CurX-_XV] = 0; |
---|
[1044] | 625 | *CurX = NewX; |
---|
[1050] | 626 | IsUsed[NewX-_XV] = 1; |
---|
[1044] | 627 | } |
---|
| 628 | } while(CurX >= Loop); |
---|
| 629 | |
---|
| 630 | if (CurX == Loop) |
---|
| 631 | { |
---|
| 632 | fprintf(stderr, "emd: Unexpected error in findLoop!\n"); |
---|
| 633 | exit(1); |
---|
| 634 | } |
---|
| 635 | #if DEBUG_LEVEL > 3 |
---|
| 636 | printf("FOUND LOOP:\n"); |
---|
| 637 | for (i=0; i < steps; i++) |
---|
| 638 | printf("%d: (%d,%d)\n", i, Loop[i]->i, Loop[i]->j); |
---|
| 639 | #endif |
---|
| 640 | |
---|
[1064] | 641 | delete[] IsUsed; |
---|
| 642 | |
---|
[1044] | 643 | return steps; |
---|
| 644 | } |
---|
| 645 | |
---|
| 646 | |
---|
| 647 | |
---|
| 648 | /********************** |
---|
| 649 | russel |
---|
| 650 | **********************/ |
---|
[1062] | 651 | static void russel(double *S, double *D, int _n1, int _n2, float **_CM, char **_IsX, node2_t **_RowsX, node2_t **_ColsX) |
---|
[1044] | 652 | { |
---|
[1064] | 653 | int i, j, found, minI, minJ; |
---|
| 654 | int max_n = max(_n1, _n2); //max_n was introduced in r1062 instead of the #defined constant MAX_SIG_SIZE1=1000 in the original implementation. max_n is better than the constant, but it would be even better to use either _n1 or _n2, if we only knew what size each individual array should precisely have. |
---|
[1044] | 655 | double deltaMin, oldVal, diff; |
---|
[1061] | 656 | double** Delta = new double*[_n1]; |
---|
| 657 | for(int k = 0; k < _n1; ++k) |
---|
| 658 | Delta[k] = new double[_n2]; |
---|
[1064] | 659 | node1_t *Ur=new node1_t[max_n], *Vr=new node1_t[max_n]; |
---|
[1044] | 660 | node1_t uHead, *CurU, *PrevU; |
---|
| 661 | node1_t vHead, *CurV, *PrevV; |
---|
| 662 | node1_t *PrevUMinI, *PrevVMinJ, *Remember; |
---|
| 663 | |
---|
| 664 | /* INITIALIZE THE ROWS LIST (Ur), AND THE COLUMNS LIST (Vr) */ |
---|
| 665 | uHead.Next = CurU = Ur; |
---|
| 666 | for (i=0; i < _n1; i++) |
---|
| 667 | { |
---|
| 668 | CurU->i = i; |
---|
| 669 | CurU->val = -INFINITY; |
---|
| 670 | CurU->Next = CurU+1; |
---|
| 671 | CurU++; |
---|
| 672 | } |
---|
| 673 | (--CurU)->Next = NULL; |
---|
| 674 | |
---|
| 675 | vHead.Next = CurV = Vr; |
---|
| 676 | for (j=0; j < _n2; j++) |
---|
| 677 | { |
---|
| 678 | CurV->i = j; |
---|
| 679 | CurV->val = -INFINITY; |
---|
| 680 | CurV->Next = CurV+1; |
---|
| 681 | CurV++; |
---|
| 682 | } |
---|
| 683 | (--CurV)->Next = NULL; |
---|
| 684 | |
---|
| 685 | /* FIND THE MAXIMUM ROW AND COLUMN VALUES (Ur[i] AND Vr[j]) */ |
---|
| 686 | for(i=0; i < _n1 ; i++) |
---|
| 687 | for(j=0; j < _n2 ; j++) |
---|
| 688 | { |
---|
| 689 | float v; |
---|
[1050] | 690 | v = _CM[i][j]; |
---|
[1044] | 691 | if (Ur[i].val <= v) |
---|
| 692 | Ur[i].val = v; |
---|
| 693 | if (Vr[j].val <= v) |
---|
| 694 | Vr[j].val = v; |
---|
| 695 | } |
---|
| 696 | |
---|
| 697 | /* COMPUTE THE Delta MATRIX */ |
---|
| 698 | for(i=0; i < _n1 ; i++) |
---|
| 699 | for(j=0; j < _n2 ; j++) |
---|
[1050] | 700 | Delta[i][j] = _CM[i][j] - Ur[i].val - Vr[j].val; |
---|
[1044] | 701 | |
---|
| 702 | /* FIND THE BASIC VARIABLES */ |
---|
| 703 | do |
---|
| 704 | { |
---|
| 705 | #if DEBUG_LEVEL > 3 |
---|
| 706 | printf("Ur="); |
---|
| 707 | for(CurU = uHead.Next; CurU != NULL; CurU = CurU->Next) |
---|
| 708 | printf("[%d]",CurU-Ur); |
---|
| 709 | printf("\n"); |
---|
| 710 | printf("Vr="); |
---|
| 711 | for(CurV = vHead.Next; CurV != NULL; CurV = CurV->Next) |
---|
| 712 | printf("[%d]",CurV-Vr); |
---|
| 713 | printf("\n"); |
---|
| 714 | printf("\n\n"); |
---|
| 715 | #endif |
---|
| 716 | |
---|
| 717 | /* FIND THE SMALLEST Delta[i][j] */ |
---|
| 718 | found = 0; |
---|
| 719 | deltaMin = INFINITY; |
---|
| 720 | PrevU = &uHead; |
---|
| 721 | for (CurU=uHead.Next; CurU != NULL; CurU=CurU->Next) |
---|
| 722 | { |
---|
| 723 | int i; |
---|
| 724 | i = CurU->i; |
---|
| 725 | PrevV = &vHead; |
---|
| 726 | for (CurV=vHead.Next; CurV != NULL; CurV=CurV->Next) |
---|
| 727 | { |
---|
| 728 | int j; |
---|
| 729 | j = CurV->i; |
---|
| 730 | if (deltaMin > Delta[i][j]) |
---|
| 731 | { |
---|
| 732 | deltaMin = Delta[i][j]; |
---|
| 733 | minI = i; |
---|
| 734 | minJ = j; |
---|
| 735 | PrevUMinI = PrevU; |
---|
| 736 | PrevVMinJ = PrevV; |
---|
| 737 | found = 1; |
---|
| 738 | } |
---|
| 739 | PrevV = CurV; |
---|
| 740 | } |
---|
| 741 | PrevU = CurU; |
---|
| 742 | } |
---|
| 743 | |
---|
| 744 | if (! found) |
---|
| 745 | break; |
---|
| 746 | |
---|
| 747 | /* ADD X[minI][minJ] TO THE BASIS, AND ADJUST SUPPLIES AND COST */ |
---|
| 748 | Remember = PrevUMinI->Next; |
---|
[1062] | 749 | addBasicVariable(minI, minJ, S, D, PrevUMinI, PrevVMinJ, &uHead, _IsX, _RowsX, _ColsX); |
---|
[1044] | 750 | |
---|
| 751 | /* UPDATE THE NECESSARY Delta[][] */ |
---|
| 752 | if (Remember == PrevUMinI->Next) /* LINE minI WAS DELETED */ |
---|
| 753 | { |
---|
| 754 | for (CurV=vHead.Next; CurV != NULL; CurV=CurV->Next) |
---|
| 755 | { |
---|
| 756 | int j; |
---|
| 757 | j = CurV->i; |
---|
[1050] | 758 | if (CurV->val == _CM[minI][j]) /* COLUMN j NEEDS UPDATING */ |
---|
[1044] | 759 | { |
---|
| 760 | /* FIND THE NEW MAXIMUM VALUE IN THE COLUMN */ |
---|
| 761 | oldVal = CurV->val; |
---|
| 762 | CurV->val = -INFINITY; |
---|
| 763 | for (CurU=uHead.Next; CurU != NULL; CurU=CurU->Next) |
---|
| 764 | { |
---|
| 765 | int i; |
---|
| 766 | i = CurU->i; |
---|
[1050] | 767 | if (CurV->val <= _CM[i][j]) |
---|
| 768 | CurV->val = _CM[i][j]; |
---|
[1044] | 769 | } |
---|
| 770 | |
---|
| 771 | /* IF NEEDED, ADJUST THE RELEVANT Delta[*][j] */ |
---|
| 772 | diff = oldVal - CurV->val; |
---|
| 773 | if (fabs(diff) < EPSILON * _maxC) |
---|
| 774 | for (CurU=uHead.Next; CurU != NULL; CurU=CurU->Next) |
---|
| 775 | Delta[CurU->i][j] += diff; |
---|
| 776 | } |
---|
| 777 | } |
---|
| 778 | } |
---|
| 779 | else /* COLUMN minJ WAS DELETED */ |
---|
| 780 | { |
---|
| 781 | for (CurU=uHead.Next; CurU != NULL; CurU=CurU->Next) |
---|
| 782 | { |
---|
| 783 | int i; |
---|
| 784 | i = CurU->i; |
---|
[1050] | 785 | if (CurU->val == _CM[i][minJ]) /* ROW i NEEDS UPDATING */ |
---|
[1044] | 786 | { |
---|
| 787 | /* FIND THE NEW MAXIMUM VALUE IN THE ROW */ |
---|
| 788 | oldVal = CurU->val; |
---|
| 789 | CurU->val = -INFINITY; |
---|
| 790 | for (CurV=vHead.Next; CurV != NULL; CurV=CurV->Next) |
---|
| 791 | { |
---|
| 792 | int j; |
---|
| 793 | j = CurV->i; |
---|
[1050] | 794 | if(CurU->val <= _CM[i][j]) |
---|
| 795 | CurU->val = _CM[i][j]; |
---|
[1044] | 796 | } |
---|
| 797 | |
---|
| 798 | /* If NEEDED, ADJUST THE RELEVANT Delta[i][*] */ |
---|
| 799 | diff = oldVal - CurU->val; |
---|
| 800 | if (fabs(diff) < EPSILON * _maxC) |
---|
| 801 | for (CurV=vHead.Next; CurV != NULL; CurV=CurV->Next) |
---|
| 802 | Delta[i][CurV->i] += diff; |
---|
| 803 | } |
---|
| 804 | } |
---|
| 805 | } |
---|
| 806 | } while (uHead.Next != NULL || vHead.Next != NULL); |
---|
[1064] | 807 | |
---|
| 808 | delete[] Ur; |
---|
| 809 | delete[] Vr; |
---|
[1061] | 810 | for(int k = 0; k < _n1; ++k) |
---|
[1062] | 811 | delete[] Delta[k]; |
---|
| 812 | delete[] Delta; |
---|
[1044] | 813 | } |
---|
| 814 | |
---|
| 815 | |
---|
| 816 | |
---|
| 817 | |
---|
| 818 | /********************** |
---|
| 819 | addBasicVariable |
---|
| 820 | **********************/ |
---|
| 821 | static void addBasicVariable(int minI, int minJ, double *S, double *D, |
---|
| 822 | node1_t *PrevUMinI, node1_t *PrevVMinJ, |
---|
[1062] | 823 | node1_t *UHead, char **_IsX, node2_t **_RowsX, node2_t **_ColsX) |
---|
[1044] | 824 | { |
---|
| 825 | double T; |
---|
| 826 | |
---|
| 827 | if (fabs(S[minI]-D[minJ]) <= EPSILON * _maxW) /* DEGENERATE CASE */ |
---|
| 828 | { |
---|
| 829 | T = S[minI]; |
---|
| 830 | S[minI] = 0; |
---|
| 831 | D[minJ] -= T; |
---|
| 832 | } |
---|
| 833 | else if (S[minI] < D[minJ]) /* SUPPLY EXHAUSTED */ |
---|
| 834 | { |
---|
| 835 | T = S[minI]; |
---|
| 836 | S[minI] = 0; |
---|
| 837 | D[minJ] -= T; |
---|
| 838 | } |
---|
| 839 | else /* DEMAND EXHAUSTED */ |
---|
| 840 | { |
---|
| 841 | T = D[minJ]; |
---|
| 842 | D[minJ] = 0; |
---|
| 843 | S[minI] -= T; |
---|
| 844 | } |
---|
| 845 | |
---|
| 846 | /* X(minI,minJ) IS A BASIC VARIABLE */ |
---|
| 847 | _IsX[minI][minJ] = 1; |
---|
| 848 | |
---|
| 849 | _EndX->val = T; |
---|
| 850 | _EndX->i = minI; |
---|
| 851 | _EndX->j = minJ; |
---|
| 852 | _EndX->NextC = _RowsX[minI]; |
---|
| 853 | _EndX->NextR = _ColsX[minJ]; |
---|
| 854 | _RowsX[minI] = _EndX; |
---|
| 855 | _ColsX[minJ] = _EndX; |
---|
| 856 | _EndX++; |
---|
| 857 | |
---|
| 858 | /* DELETE SUPPLY ROW ONLY IF THE EMPTY, AND IF NOT LAST ROW */ |
---|
| 859 | if (S[minI] == 0 && UHead->Next->Next != NULL) |
---|
| 860 | PrevUMinI->Next = PrevUMinI->Next->Next; /* REMOVE ROW FROM LIST */ |
---|
| 861 | else |
---|
| 862 | PrevVMinJ->Next = PrevVMinJ->Next->Next; /* REMOVE COLUMN FROM LIST */ |
---|
| 863 | } |
---|