1 | /* |
---|
2 | emd.c |
---|
3 | |
---|
4 | Last update: 3/14/98 (but see emd.h for a list newer changes) |
---|
5 | |
---|
6 | An implementation of the Earth Movers Distance. |
---|
7 | Based of the solution for the Transportation problem as described in |
---|
8 | "Introduction to Mathematical Programming" by F. S. Hillier and |
---|
9 | G. J. Lieberman, McGraw-Hill, 1990. |
---|
10 | |
---|
11 | Copyright (C) 1998 Yossi Rubner |
---|
12 | Computer Science Department, Stanford University |
---|
13 | E-Mail: rubner@cs.stanford.edu URL: http://robotics.stanford.edu/~rubner/emd/default.htm |
---|
14 | */ |
---|
15 | |
---|
16 | // For a list of changes since 2020, see emd.h |
---|
17 | |
---|
18 | #include <stdio.h> |
---|
19 | #include <stdlib.h> |
---|
20 | #include <math.h> |
---|
21 | #include <algorithm> |
---|
22 | |
---|
23 | #include "emd.h" |
---|
24 | |
---|
25 | #define DEBUG_LEVEL 0 |
---|
26 | /* |
---|
27 | DEBUG_LEVEL: |
---|
28 | 0 = NO MESSAGES |
---|
29 | 1 = PRINT THE NUMBER OF ITERATIONS AND THE FINAL RESULT |
---|
30 | 2 = PRINT THE RESULT AFTER EVERY ITERATION |
---|
31 | 3 = PRINT ALSO THE FLOW AFTER EVERY ITERATION |
---|
32 | 4 = PRINT A LOT OF INFORMATION (PROBABLY USEFUL ONLY FOR THE AUTHOR) |
---|
33 | */ |
---|
34 | |
---|
35 | /* NEW TYPES DEFINITION */ |
---|
36 | |
---|
37 | /* node1_t IS USED FOR SINGLE-LINKED LISTS */ |
---|
38 | typedef struct node1_t { |
---|
39 | int i; |
---|
40 | double val; |
---|
41 | struct node1_t *Next; |
---|
42 | } node1_t; |
---|
43 | |
---|
44 | /* node1_t IS USED FOR DOUBLE-LINKED LISTS */ |
---|
45 | typedef struct node2_t { |
---|
46 | int i, j; |
---|
47 | double val; |
---|
48 | struct node2_t *NextC; /* NEXT COLUMN */ |
---|
49 | struct node2_t *NextR; /* NEXT ROW */ |
---|
50 | } node2_t; |
---|
51 | |
---|
52 | |
---|
53 | |
---|
54 | /* GLOBAL VARIABLE DECLARATION */ |
---|
55 | |
---|
56 | /* VARIABLES TO HANDLE _X EFFICIENTLY */ |
---|
57 | static node2_t *_EndX, *_EnterX; |
---|
58 | static double _maxW; |
---|
59 | static float _maxC; |
---|
60 | |
---|
61 | /* DECLARATION OF FUNCTIONS */ |
---|
62 | static float init(signature_t *Signature1, signature_t *Signature2, |
---|
63 | float (*Dist)(feature_t *, feature_t *), int _n1, int _n2, |
---|
64 | float **_CM, node2_t *_XV, char **_IsX, node2_t **_RowsX, node2_t **_ColsX); |
---|
65 | static void findBasicVariables(node1_t *U, node1_t *V, int _n1, int _n2, float **_CM, char **_IsX); |
---|
66 | static int isOptimal(node1_t *U, node1_t *V, int _n1, int _n2, float **_CM, char **_IsX); |
---|
67 | static int findLoop(node2_t **Loop, int _n1, int _n2, node2_t *_XV, node2_t **_RowsX, node2_t **_ColsX); |
---|
68 | static void newSol(int _n1, int _n2, node2_t *_XV, char **_IsX, node2_t **_RowsX, node2_t **_ColsX); |
---|
69 | static void russel(double *S, double *D, int _n1, int _n2, float **_CM, char **_IsX, node2_t **_RowsX, node2_t **_ColsX); |
---|
70 | static void addBasicVariable(int minI, int minJ, double *S, double *D, |
---|
71 | node1_t *PrevUMinI, node1_t *PrevVMinJ, |
---|
72 | node1_t *UHead, char **_IsX, node2_t **_RowsX, node2_t **_ColsX); |
---|
73 | #if DEBUG_LEVEL > 0 |
---|
74 | static void printSolution(); |
---|
75 | #endif |
---|
76 | |
---|
77 | |
---|
78 | /****************************************************************************** |
---|
79 | float emd(signature_t *Signature1, signature_t *Signature2, |
---|
80 | float (*Dist)(feature_t *, feature_t *), flow_t *Flow, int *FlowSize) |
---|
81 | |
---|
82 | where |
---|
83 | |
---|
84 | Signature1, Signature2 Pointers to signatures that their distance we want |
---|
85 | to compute. |
---|
86 | Dist Pointer to the ground distance. i.e. the function that computes |
---|
87 | the distance between two features. |
---|
88 | Flow (Optional) Pointer to a vector of flow_t (defined in emd.h) |
---|
89 | where the resulting flow will be stored. Flow must have n1+n2-1 |
---|
90 | elements, where n1 and n2 are the sizes of the two signatures |
---|
91 | respectively. |
---|
92 | If NULL, the flow is not returned. |
---|
93 | FlowSize (Optional) Pointer to an integer where the number of elements in |
---|
94 | Flow will be stored |
---|
95 | |
---|
96 | ******************************************************************************/ |
---|
97 | |
---|
98 | float emd(signature_t *Signature1, signature_t *Signature2, |
---|
99 | float (*Dist)(feature_t *, feature_t *), |
---|
100 | flow_t *Flow, int *FlowSize, int _n1, int _n2) |
---|
101 | { |
---|
102 | int itr; |
---|
103 | int max_n = std::max(_n1, _n2); //max_n was introduced in r1062 instead of the #defined constant MAX_SIG_SIZE1=1000 in the original implementation. max_n is better than the constant, but it would be even better to use either _n1 or _n2, if we only knew what size each individual array should precisely have. |
---|
104 | double totalCost; |
---|
105 | float w; |
---|
106 | node2_t *XP; |
---|
107 | flow_t *FlowP; |
---|
108 | node1_t *U=new node1_t[max_n], *V=new node1_t[max_n]; |
---|
109 | /* THE COST MATRIX */ |
---|
110 | float** _CM = new float*[_n1]; |
---|
111 | char** _IsX = new char*[_n1]; |
---|
112 | for(int k = 0; k < _n1; ++k) |
---|
113 | { |
---|
114 | _CM[k] = new float[_n2]; |
---|
115 | _IsX[k] = new char[_n2]; |
---|
116 | } |
---|
117 | /* THE BASIC VARIABLES VECTOR */ |
---|
118 | node2_t *_XV = new node2_t[max_n*2]; |
---|
119 | node2_t **_RowsX = new node2_t*[max_n*2]; |
---|
120 | node2_t **_ColsX = new node2_t*[max_n*2]; |
---|
121 | |
---|
122 | w = init(Signature1, Signature2, Dist, _n1, _n2, _CM, _XV, _IsX, _RowsX, _ColsX); |
---|
123 | |
---|
124 | #if DEBUG_LEVEL > 1 |
---|
125 | printf("\nINITIAL SOLUTION:\n"); |
---|
126 | printSolution(); |
---|
127 | #endif |
---|
128 | |
---|
129 | if (_n1 > 1 && _n2 > 1) /* IF _n1 = 1 OR _n2 = 1 THEN WE ARE DONE */ |
---|
130 | { |
---|
131 | for (itr = 1; itr < MAX_ITERATIONS; itr++) |
---|
132 | { |
---|
133 | /* FIND BASIC VARIABLES */ |
---|
134 | findBasicVariables(U, V, _n1, _n2, _CM, _IsX); |
---|
135 | |
---|
136 | /* CHECK FOR OPTIMALITY */ |
---|
137 | if (isOptimal(U, V, _n1, _n2, _CM, _IsX)) |
---|
138 | break; |
---|
139 | |
---|
140 | /* IMPROVE SOLUTION */ |
---|
141 | newSol(_n1, _n2, _XV, _IsX, _RowsX, _ColsX); |
---|
142 | |
---|
143 | #if DEBUG_LEVEL > 1 |
---|
144 | printf("\nITERATION # %d \n", itr); |
---|
145 | printSolution(); |
---|
146 | #endif |
---|
147 | } |
---|
148 | |
---|
149 | if (itr == MAX_ITERATIONS) |
---|
150 | fprintf(stderr, "emd: Maximum number of iterations has been reached (%d)\n", |
---|
151 | MAX_ITERATIONS); |
---|
152 | } |
---|
153 | |
---|
154 | /* COMPUTE THE TOTAL FLOW */ |
---|
155 | totalCost = 0; |
---|
156 | if (Flow != NULL) |
---|
157 | FlowP = Flow; |
---|
158 | for(XP=_XV; XP < _EndX; XP++) |
---|
159 | { |
---|
160 | if (XP == _EnterX) /* _EnterX IS THE EMPTY SLOT */ |
---|
161 | continue; |
---|
162 | if (XP->i == Signature1->n || XP->j == Signature2->n) /* DUMMY FEATURE */ |
---|
163 | continue; |
---|
164 | |
---|
165 | if (XP->val == 0) /* ZERO FLOW */ |
---|
166 | continue; |
---|
167 | |
---|
168 | totalCost += (double)XP->val * _CM[XP->i][XP->j]; |
---|
169 | if (Flow != NULL) |
---|
170 | { |
---|
171 | FlowP->from = XP->i; |
---|
172 | FlowP->to = XP->j; |
---|
173 | FlowP->amount = XP->val; |
---|
174 | FlowP++; |
---|
175 | } |
---|
176 | } |
---|
177 | if (Flow != NULL) |
---|
178 | *FlowSize = FlowP-Flow; |
---|
179 | |
---|
180 | #if DEBUG_LEVEL > 0 |
---|
181 | printf("\n*** OPTIMAL SOLUTION (%d ITERATIONS): %f ***\n", itr, totalCost); |
---|
182 | #endif |
---|
183 | |
---|
184 | for(int k = 0; k < _n1; ++k) |
---|
185 | { |
---|
186 | delete[] _CM[k]; |
---|
187 | delete[] _IsX[k]; |
---|
188 | } |
---|
189 | delete[] _CM; |
---|
190 | delete[] _IsX; |
---|
191 | delete[] _XV; |
---|
192 | delete[] _RowsX; |
---|
193 | delete[] _ColsX; |
---|
194 | |
---|
195 | delete[] U; |
---|
196 | delete[] V; |
---|
197 | |
---|
198 | /* RETURN THE NORMALIZED COST == EMD */ |
---|
199 | return (float)(totalCost / w); |
---|
200 | } |
---|
201 | |
---|
202 | |
---|
203 | |
---|
204 | |
---|
205 | |
---|
206 | /********************** |
---|
207 | init |
---|
208 | **********************/ |
---|
209 | static float init(signature_t *Signature1, signature_t *Signature2, |
---|
210 | float (*Dist)(feature_t *, feature_t *), int _n1, int _n2, |
---|
211 | float **_CM, node2_t *_XV, char **_IsX, node2_t **_RowsX, node2_t **_ColsX) |
---|
212 | { |
---|
213 | int i, j; |
---|
214 | int max_n = std::max(_n1, _n2); //max_n was introduced in r1062 instead of the #defined constant MAX_SIG_SIZE1=1000 in the original implementation. max_n is better than the constant, but it would be even better to use either _n1 or _n2, if we only knew what size each individual array should precisely have. |
---|
215 | double sSum, dSum, diff; |
---|
216 | feature_t *P1, *P2; |
---|
217 | double *S=new double[max_n], *D=new double[max_n]; |
---|
218 | |
---|
219 | |
---|
220 | /* COMPUTE THE DISTANCE MATRIX */ |
---|
221 | _maxC = 0; |
---|
222 | for(i=0, P1=Signature1->Features; i < _n1; i++, P1++) |
---|
223 | for(j=0, P2=Signature2->Features; j < _n2; j++, P2++) |
---|
224 | { |
---|
225 | _CM[i][j] = Dist(P1, P2); |
---|
226 | if (_CM[i][j] > _maxC) |
---|
227 | _maxC = _CM[i][j]; |
---|
228 | } |
---|
229 | |
---|
230 | /* SUM UP THE SUPPLY AND DEMAND */ |
---|
231 | sSum = 0.0; |
---|
232 | for(i=0; i < _n1; i++) |
---|
233 | { |
---|
234 | S[i] = Signature1->Weights[i]; |
---|
235 | sSum += Signature1->Weights[i]; |
---|
236 | _RowsX[i] = NULL; |
---|
237 | } |
---|
238 | dSum = 0.0; |
---|
239 | for(j=0; j < _n2; j++) |
---|
240 | { |
---|
241 | D[j] = Signature2->Weights[j]; |
---|
242 | dSum += Signature2->Weights[j]; |
---|
243 | _ColsX[j] = NULL; |
---|
244 | } |
---|
245 | |
---|
246 | /* IF SUPPLY DIFFERENT THAN THE DEMAND, ADD A ZERO-COST DUMMY CLUSTER */ |
---|
247 | diff = sSum - dSum; |
---|
248 | if (fabs(diff) >= EPSILON * sSum) |
---|
249 | { |
---|
250 | if (diff < 0.0) |
---|
251 | { |
---|
252 | for (j=0; j < _n2; j++) |
---|
253 | _CM[_n1][j] = 0; |
---|
254 | S[_n1] = -diff; |
---|
255 | _RowsX[_n1] = NULL; |
---|
256 | _n1++; |
---|
257 | } |
---|
258 | else |
---|
259 | { |
---|
260 | for (i=0; i < _n1; i++) |
---|
261 | _CM[i][_n2] = 0; |
---|
262 | D[_n2] = diff; |
---|
263 | _ColsX[_n2] = NULL; |
---|
264 | _n2++; |
---|
265 | } |
---|
266 | } |
---|
267 | |
---|
268 | /* INITIALIZE THE BASIC VARIABLE STRUCTURES */ |
---|
269 | for (i=0; i < _n1; i++) |
---|
270 | for (j=0; j < _n2; j++) |
---|
271 | _IsX[i][j] = 0; |
---|
272 | _EndX = _XV; |
---|
273 | |
---|
274 | _maxW = sSum > dSum ? sSum : dSum; |
---|
275 | |
---|
276 | /* FIND INITIAL SOLUTION */ |
---|
277 | russel(S, D, _n1, _n2, _CM, _IsX, _RowsX, _ColsX); |
---|
278 | |
---|
279 | _EnterX = _EndX++; /* AN EMPTY SLOT (ONLY _n1+_n2-1 BASIC VARIABLES) */ |
---|
280 | |
---|
281 | delete[] S; |
---|
282 | delete[] D; |
---|
283 | |
---|
284 | return sSum > dSum ? dSum : sSum; |
---|
285 | } |
---|
286 | |
---|
287 | |
---|
288 | /********************** |
---|
289 | findBasicVariables |
---|
290 | **********************/ |
---|
291 | static void findBasicVariables(node1_t *U, node1_t *V, int _n1, int _n2, float **_CM, char **_IsX) |
---|
292 | { |
---|
293 | int i, j, found; |
---|
294 | int UfoundNum, VfoundNum; |
---|
295 | node1_t u0Head, u1Head, *CurU, *PrevU; |
---|
296 | node1_t v0Head, v1Head, *CurV, *PrevV; |
---|
297 | |
---|
298 | /* INITIALIZE THE ROWS LIST (U) AND THE COLUMNS LIST (V) */ |
---|
299 | u0Head.Next = CurU = U; |
---|
300 | for (i=0; i < _n1; i++) |
---|
301 | { |
---|
302 | CurU->i = i; |
---|
303 | CurU->Next = CurU+1; |
---|
304 | CurU++; |
---|
305 | } |
---|
306 | (--CurU)->Next = NULL; |
---|
307 | u1Head.Next = NULL; |
---|
308 | |
---|
309 | CurV = V+1; |
---|
310 | v0Head.Next = _n2 > 1 ? V+1 : NULL; |
---|
311 | for (j=1; j < _n2; j++) |
---|
312 | { |
---|
313 | CurV->i = j; |
---|
314 | CurV->Next = CurV+1; |
---|
315 | CurV++; |
---|
316 | } |
---|
317 | (--CurV)->Next = NULL; |
---|
318 | v1Head.Next = NULL; |
---|
319 | |
---|
320 | /* THERE ARE _n1+_n2 VARIABLES BUT ONLY _n1+_n2-1 INDEPENDENT EQUATIONS, |
---|
321 | SO SET V[0]=0 */ |
---|
322 | V[0].i = 0; |
---|
323 | V[0].val = 0; |
---|
324 | v1Head.Next = V; |
---|
325 | v1Head.Next->Next = NULL; |
---|
326 | |
---|
327 | /* LOOP UNTIL ALL VARIABLES ARE FOUND */ |
---|
328 | UfoundNum=VfoundNum=0; |
---|
329 | while (UfoundNum < _n1 || VfoundNum < _n2) |
---|
330 | { |
---|
331 | |
---|
332 | #if DEBUG_LEVEL > 3 |
---|
333 | printf("UfoundNum=%d/%d,VfoundNum=%d/%d\n",UfoundNum,_n1,VfoundNum,_n2); |
---|
334 | printf("U0="); |
---|
335 | for(CurU = u0Head.Next; CurU != NULL; CurU = CurU->Next) |
---|
336 | printf("[%d]",CurU-U); |
---|
337 | printf("\n"); |
---|
338 | printf("U1="); |
---|
339 | for(CurU = u1Head.Next; CurU != NULL; CurU = CurU->Next) |
---|
340 | printf("[%d]",CurU-U); |
---|
341 | printf("\n"); |
---|
342 | printf("V0="); |
---|
343 | for(CurV = v0Head.Next; CurV != NULL; CurV = CurV->Next) |
---|
344 | printf("[%d]",CurV-V); |
---|
345 | printf("\n"); |
---|
346 | printf("V1="); |
---|
347 | for(CurV = v1Head.Next; CurV != NULL; CurV = CurV->Next) |
---|
348 | printf("[%d]",CurV-V); |
---|
349 | printf("\n\n"); |
---|
350 | #endif |
---|
351 | |
---|
352 | found = 0; |
---|
353 | if (VfoundNum < _n2) |
---|
354 | { |
---|
355 | /* LOOP OVER ALL MARKED COLUMNS */ |
---|
356 | PrevV = &v1Head; |
---|
357 | for (CurV=v1Head.Next; CurV != NULL; CurV=CurV->Next) |
---|
358 | { |
---|
359 | j = CurV->i; |
---|
360 | /* FIND THE VARIABLES IN COLUMN j */ |
---|
361 | PrevU = &u0Head; |
---|
362 | for (CurU=u0Head.Next; CurU != NULL; CurU=CurU->Next) |
---|
363 | { |
---|
364 | i = CurU->i; |
---|
365 | if (_IsX[i][j]) |
---|
366 | { |
---|
367 | /* COMPUTE U[i] */ |
---|
368 | CurU->val = _CM[i][j] - CurV->val; |
---|
369 | /* ...AND ADD IT TO THE MARKED LIST */ |
---|
370 | PrevU->Next = CurU->Next; |
---|
371 | CurU->Next = u1Head.Next != NULL ? u1Head.Next : NULL; |
---|
372 | u1Head.Next = CurU; |
---|
373 | CurU = PrevU; |
---|
374 | } |
---|
375 | else |
---|
376 | PrevU = CurU; |
---|
377 | } |
---|
378 | PrevV->Next = CurV->Next; |
---|
379 | VfoundNum++; |
---|
380 | found = 1; |
---|
381 | } |
---|
382 | } |
---|
383 | if (UfoundNum < _n1) |
---|
384 | { |
---|
385 | /* LOOP OVER ALL MARKED ROWS */ |
---|
386 | PrevU = &u1Head; |
---|
387 | for (CurU=u1Head.Next; CurU != NULL; CurU=CurU->Next) |
---|
388 | { |
---|
389 | i = CurU->i; |
---|
390 | /* FIND THE VARIABLES IN ROWS i */ |
---|
391 | PrevV = &v0Head; |
---|
392 | for (CurV=v0Head.Next; CurV != NULL; CurV=CurV->Next) |
---|
393 | { |
---|
394 | j = CurV->i; |
---|
395 | if (_IsX[i][j]) |
---|
396 | { |
---|
397 | /* COMPUTE V[j] */ |
---|
398 | CurV->val = _CM[i][j] - CurU->val; |
---|
399 | /* ...AND ADD IT TO THE MARKED LIST */ |
---|
400 | PrevV->Next = CurV->Next; |
---|
401 | CurV->Next = v1Head.Next != NULL ? v1Head.Next: NULL; |
---|
402 | v1Head.Next = CurV; |
---|
403 | CurV = PrevV; |
---|
404 | } |
---|
405 | else |
---|
406 | PrevV = CurV; |
---|
407 | } |
---|
408 | PrevU->Next = CurU->Next; |
---|
409 | UfoundNum++; |
---|
410 | found = 1; |
---|
411 | } |
---|
412 | } |
---|
413 | if (! found) |
---|
414 | { |
---|
415 | fprintf(stderr, "emd: Unexpected error in findBasicVariables!\n"); |
---|
416 | fprintf(stderr, "This typically happens when the EPSILON defined in\n"); |
---|
417 | fprintf(stderr, "emd.h is not right for the scale of the problem.\n"); |
---|
418 | exit(1); |
---|
419 | } |
---|
420 | } |
---|
421 | } |
---|
422 | |
---|
423 | |
---|
424 | |
---|
425 | |
---|
426 | /********************** |
---|
427 | isOptimal |
---|
428 | **********************/ |
---|
429 | static int isOptimal(node1_t *U, node1_t *V, int _n1, int _n2, float **_CM, char **_IsX) |
---|
430 | { |
---|
431 | double delta, deltaMin; |
---|
432 | int i, j, minI, minJ; |
---|
433 | |
---|
434 | /* FIND THE MINIMAL Cij-Ui-Vj OVER ALL i,j */ |
---|
435 | deltaMin = INFINITY; |
---|
436 | for(i=0; i < _n1; i++) |
---|
437 | for(j=0; j < _n2; j++) |
---|
438 | if (! _IsX[i][j]) |
---|
439 | { |
---|
440 | delta = _CM[i][j] - U[i].val - V[j].val; |
---|
441 | if (deltaMin > delta) |
---|
442 | { |
---|
443 | deltaMin = delta; |
---|
444 | minI = i; |
---|
445 | minJ = j; |
---|
446 | } |
---|
447 | } |
---|
448 | |
---|
449 | #if DEBUG_LEVEL > 3 |
---|
450 | printf("deltaMin=%f\n", deltaMin); |
---|
451 | #endif |
---|
452 | |
---|
453 | if (deltaMin == INFINITY) |
---|
454 | { |
---|
455 | fprintf(stderr, "emd: Unexpected error in isOptimal.\n"); |
---|
456 | exit(0); |
---|
457 | } |
---|
458 | |
---|
459 | _EnterX->i = minI; |
---|
460 | _EnterX->j = minJ; |
---|
461 | |
---|
462 | /* IF NO NEGATIVE deltaMin, WE FOUND THE OPTIMAL SOLUTION */ |
---|
463 | return deltaMin >= -EPSILON * _maxC; |
---|
464 | |
---|
465 | /* |
---|
466 | return deltaMin >= -EPSILON; |
---|
467 | */ |
---|
468 | } |
---|
469 | |
---|
470 | |
---|
471 | /********************** |
---|
472 | newSol |
---|
473 | **********************/ |
---|
474 | static void newSol(int _n1, int _n2, node2_t * _XV, char **_IsX, node2_t **_RowsX, node2_t **_ColsX) |
---|
475 | { |
---|
476 | int i, j, k; |
---|
477 | int max_n = std::max(_n1, _n2); //max_n was introduced in r1062 instead of the #defined constant MAX_SIG_SIZE1=1000 in the original implementation. max_n is better than the constant, but it would be even better to use either _n1 or _n2, if we only knew what size each individual array should precisely have. |
---|
478 | double xMin; |
---|
479 | int steps; |
---|
480 | node2_t **Loop=new node2_t*[2*max_n], *CurX, *LeaveX; |
---|
481 | |
---|
482 | #if DEBUG_LEVEL > 3 |
---|
483 | printf("EnterX = (%d,%d)\n", _EnterX->i, _EnterX->j); |
---|
484 | #endif |
---|
485 | |
---|
486 | /* ENTER THE NEW BASIC VARIABLE */ |
---|
487 | i = _EnterX->i; |
---|
488 | j = _EnterX->j; |
---|
489 | _IsX[i][j] = 1; |
---|
490 | _EnterX->NextC = _RowsX[i]; |
---|
491 | _EnterX->NextR = _ColsX[j]; |
---|
492 | _EnterX->val = 0; |
---|
493 | _RowsX[i] = _EnterX; |
---|
494 | _ColsX[j] = _EnterX; |
---|
495 | |
---|
496 | /* FIND A CHAIN REACTION */ |
---|
497 | steps = findLoop(Loop, _n1, _n2, _XV, _RowsX, _ColsX); |
---|
498 | |
---|
499 | /* FIND THE LARGEST VALUE IN THE LOOP */ |
---|
500 | xMin = INFINITY; |
---|
501 | for (k=1; k < steps; k+=2) |
---|
502 | { |
---|
503 | if (Loop[k]->val < xMin) |
---|
504 | { |
---|
505 | LeaveX = Loop[k]; |
---|
506 | xMin = Loop[k]->val; |
---|
507 | } |
---|
508 | } |
---|
509 | |
---|
510 | /* UPDATE THE LOOP */ |
---|
511 | for (k=0; k < steps; k+=2) |
---|
512 | { |
---|
513 | Loop[k]->val += xMin; |
---|
514 | Loop[k+1]->val -= xMin; |
---|
515 | } |
---|
516 | |
---|
517 | #if DEBUG_LEVEL > 3 |
---|
518 | printf("LeaveX = (%d,%d)\n", LeaveX->i, LeaveX->j); |
---|
519 | #endif |
---|
520 | |
---|
521 | /* REMOVE THE LEAVING BASIC VARIABLE */ |
---|
522 | i = LeaveX->i; |
---|
523 | j = LeaveX->j; |
---|
524 | _IsX[i][j] = 0; |
---|
525 | if (_RowsX[i] == LeaveX) |
---|
526 | _RowsX[i] = LeaveX->NextC; |
---|
527 | else |
---|
528 | for (CurX=_RowsX[i]; CurX != NULL; CurX = CurX->NextC) |
---|
529 | if (CurX->NextC == LeaveX) |
---|
530 | { |
---|
531 | CurX->NextC = CurX->NextC->NextC; |
---|
532 | break; |
---|
533 | } |
---|
534 | if (_ColsX[j] == LeaveX) |
---|
535 | _ColsX[j] = LeaveX->NextR; |
---|
536 | else |
---|
537 | for (CurX=_ColsX[j]; CurX != NULL; CurX = CurX->NextR) |
---|
538 | if (CurX->NextR == LeaveX) |
---|
539 | { |
---|
540 | CurX->NextR = CurX->NextR->NextR; |
---|
541 | break; |
---|
542 | } |
---|
543 | |
---|
544 | /* SET _EnterX TO BE THE NEW EMPTY SLOT */ |
---|
545 | _EnterX = LeaveX; |
---|
546 | |
---|
547 | delete[] Loop; |
---|
548 | } |
---|
549 | |
---|
550 | |
---|
551 | |
---|
552 | /********************** |
---|
553 | findLoop |
---|
554 | **********************/ |
---|
555 | static int findLoop(node2_t **Loop, int _n1, int _n2, node2_t *_XV, node2_t **_RowsX, node2_t **_ColsX) |
---|
556 | { |
---|
557 | int i, steps; |
---|
558 | int max_n = std::max(_n1, _n2); //max_n was introduced in r1062 instead of the #defined constant MAX_SIG_SIZE1=1000 in the original implementation. max_n is better than the constant, but it would be even better to use either _n1 or _n2, if we only knew what size each individual array should precisely have. |
---|
559 | node2_t **CurX, *NewX; |
---|
560 | char *IsUsed=new char[2*max_n]; |
---|
561 | |
---|
562 | for (i=0; i < _n1+_n2; i++) |
---|
563 | IsUsed[i] = 0; |
---|
564 | |
---|
565 | CurX = Loop; |
---|
566 | NewX = *CurX = _EnterX; |
---|
567 | IsUsed[_EnterX-_XV] = 1; |
---|
568 | steps = 1; |
---|
569 | |
---|
570 | do |
---|
571 | { |
---|
572 | if (steps%2 == 1) |
---|
573 | { |
---|
574 | /* FIND AN UNUSED X IN THE ROW */ |
---|
575 | NewX = _RowsX[NewX->i]; |
---|
576 | while (NewX != NULL && IsUsed[NewX-_XV]) |
---|
577 | NewX = NewX->NextC; |
---|
578 | } |
---|
579 | else |
---|
580 | { |
---|
581 | /* FIND AN UNUSED X IN THE COLUMN, OR THE ENTERING X */ |
---|
582 | NewX = _ColsX[NewX->j]; |
---|
583 | while (NewX != NULL && IsUsed[NewX-_XV] && NewX != _EnterX) |
---|
584 | NewX = NewX->NextR; |
---|
585 | if (NewX == _EnterX) |
---|
586 | break; |
---|
587 | } |
---|
588 | |
---|
589 | if (NewX != NULL) /* FOUND THE NEXT X */ |
---|
590 | { |
---|
591 | /* ADD X TO THE LOOP */ |
---|
592 | *++CurX = NewX; |
---|
593 | IsUsed[NewX-_XV] = 1; |
---|
594 | steps++; |
---|
595 | #if DEBUG_LEVEL > 3 |
---|
596 | printf("steps=%d, NewX=(%d,%d)\n", steps, NewX->i, NewX->j); |
---|
597 | #endif |
---|
598 | } |
---|
599 | else /* DIDN'T FIND THE NEXT X */ |
---|
600 | { |
---|
601 | /* BACKTRACK */ |
---|
602 | do |
---|
603 | { |
---|
604 | NewX = *CurX; |
---|
605 | do |
---|
606 | { |
---|
607 | if (steps%2 == 1) |
---|
608 | NewX = NewX->NextR; |
---|
609 | else |
---|
610 | NewX = NewX->NextC; |
---|
611 | } while (NewX != NULL && IsUsed[NewX-_XV]); |
---|
612 | |
---|
613 | if (NewX == NULL) |
---|
614 | { |
---|
615 | IsUsed[*CurX-_XV] = 0; |
---|
616 | CurX--; |
---|
617 | steps--; |
---|
618 | } |
---|
619 | } while (NewX == NULL && CurX >= Loop); |
---|
620 | |
---|
621 | #if DEBUG_LEVEL > 3 |
---|
622 | printf("BACKTRACKING TO: steps=%d, NewX=(%d,%d)\n", |
---|
623 | steps, NewX->i, NewX->j); |
---|
624 | #endif |
---|
625 | IsUsed[*CurX-_XV] = 0; |
---|
626 | *CurX = NewX; |
---|
627 | IsUsed[NewX-_XV] = 1; |
---|
628 | } |
---|
629 | } while(CurX >= Loop); |
---|
630 | |
---|
631 | if (CurX == Loop) |
---|
632 | { |
---|
633 | fprintf(stderr, "emd: Unexpected error in findLoop!\n"); |
---|
634 | exit(1); |
---|
635 | } |
---|
636 | #if DEBUG_LEVEL > 3 |
---|
637 | printf("FOUND LOOP:\n"); |
---|
638 | for (i=0; i < steps; i++) |
---|
639 | printf("%d: (%d,%d)\n", i, Loop[i]->i, Loop[i]->j); |
---|
640 | #endif |
---|
641 | |
---|
642 | delete[] IsUsed; |
---|
643 | |
---|
644 | return steps; |
---|
645 | } |
---|
646 | |
---|
647 | |
---|
648 | |
---|
649 | /********************** |
---|
650 | russel |
---|
651 | **********************/ |
---|
652 | static void russel(double *S, double *D, int _n1, int _n2, float **_CM, char **_IsX, node2_t **_RowsX, node2_t **_ColsX) |
---|
653 | { |
---|
654 | int i, j, found, minI, minJ; |
---|
655 | int max_n = std::max(_n1, _n2); //max_n was introduced in r1062 instead of the #defined constant MAX_SIG_SIZE1=1000 in the original implementation. max_n is better than the constant, but it would be even better to use either _n1 or _n2, if we only knew what size each individual array should precisely have. |
---|
656 | double deltaMin, oldVal, diff; |
---|
657 | double** Delta = new double*[_n1]; |
---|
658 | for(int k = 0; k < _n1; ++k) |
---|
659 | Delta[k] = new double[_n2]; |
---|
660 | node1_t *Ur=new node1_t[max_n], *Vr=new node1_t[max_n]; |
---|
661 | node1_t uHead, *CurU, *PrevU; |
---|
662 | node1_t vHead, *CurV, *PrevV; |
---|
663 | node1_t *PrevUMinI, *PrevVMinJ, *Remember; |
---|
664 | |
---|
665 | /* INITIALIZE THE ROWS LIST (Ur), AND THE COLUMNS LIST (Vr) */ |
---|
666 | uHead.Next = CurU = Ur; |
---|
667 | for (i=0; i < _n1; i++) |
---|
668 | { |
---|
669 | CurU->i = i; |
---|
670 | CurU->val = -INFINITY; |
---|
671 | CurU->Next = CurU+1; |
---|
672 | CurU++; |
---|
673 | } |
---|
674 | (--CurU)->Next = NULL; |
---|
675 | |
---|
676 | vHead.Next = CurV = Vr; |
---|
677 | for (j=0; j < _n2; j++) |
---|
678 | { |
---|
679 | CurV->i = j; |
---|
680 | CurV->val = -INFINITY; |
---|
681 | CurV->Next = CurV+1; |
---|
682 | CurV++; |
---|
683 | } |
---|
684 | (--CurV)->Next = NULL; |
---|
685 | |
---|
686 | /* FIND THE MAXIMUM ROW AND COLUMN VALUES (Ur[i] AND Vr[j]) */ |
---|
687 | for(i=0; i < _n1 ; i++) |
---|
688 | for(j=0; j < _n2 ; j++) |
---|
689 | { |
---|
690 | float v; |
---|
691 | v = _CM[i][j]; |
---|
692 | if (Ur[i].val <= v) |
---|
693 | Ur[i].val = v; |
---|
694 | if (Vr[j].val <= v) |
---|
695 | Vr[j].val = v; |
---|
696 | } |
---|
697 | |
---|
698 | /* COMPUTE THE Delta MATRIX */ |
---|
699 | for(i=0; i < _n1 ; i++) |
---|
700 | for(j=0; j < _n2 ; j++) |
---|
701 | Delta[i][j] = _CM[i][j] - Ur[i].val - Vr[j].val; |
---|
702 | |
---|
703 | /* FIND THE BASIC VARIABLES */ |
---|
704 | do |
---|
705 | { |
---|
706 | #if DEBUG_LEVEL > 3 |
---|
707 | printf("Ur="); |
---|
708 | for(CurU = uHead.Next; CurU != NULL; CurU = CurU->Next) |
---|
709 | printf("[%d]",CurU-Ur); |
---|
710 | printf("\n"); |
---|
711 | printf("Vr="); |
---|
712 | for(CurV = vHead.Next; CurV != NULL; CurV = CurV->Next) |
---|
713 | printf("[%d]",CurV-Vr); |
---|
714 | printf("\n"); |
---|
715 | printf("\n\n"); |
---|
716 | #endif |
---|
717 | |
---|
718 | /* FIND THE SMALLEST Delta[i][j] */ |
---|
719 | found = 0; |
---|
720 | deltaMin = INFINITY; |
---|
721 | PrevU = &uHead; |
---|
722 | for (CurU=uHead.Next; CurU != NULL; CurU=CurU->Next) |
---|
723 | { |
---|
724 | int i; |
---|
725 | i = CurU->i; |
---|
726 | PrevV = &vHead; |
---|
727 | for (CurV=vHead.Next; CurV != NULL; CurV=CurV->Next) |
---|
728 | { |
---|
729 | int j; |
---|
730 | j = CurV->i; |
---|
731 | if (deltaMin > Delta[i][j]) |
---|
732 | { |
---|
733 | deltaMin = Delta[i][j]; |
---|
734 | minI = i; |
---|
735 | minJ = j; |
---|
736 | PrevUMinI = PrevU; |
---|
737 | PrevVMinJ = PrevV; |
---|
738 | found = 1; |
---|
739 | } |
---|
740 | PrevV = CurV; |
---|
741 | } |
---|
742 | PrevU = CurU; |
---|
743 | } |
---|
744 | |
---|
745 | if (! found) |
---|
746 | break; |
---|
747 | |
---|
748 | /* ADD X[minI][minJ] TO THE BASIS, AND ADJUST SUPPLIES AND COST */ |
---|
749 | Remember = PrevUMinI->Next; |
---|
750 | addBasicVariable(minI, minJ, S, D, PrevUMinI, PrevVMinJ, &uHead, _IsX, _RowsX, _ColsX); |
---|
751 | |
---|
752 | /* UPDATE THE NECESSARY Delta[][] */ |
---|
753 | if (Remember == PrevUMinI->Next) /* LINE minI WAS DELETED */ |
---|
754 | { |
---|
755 | for (CurV=vHead.Next; CurV != NULL; CurV=CurV->Next) |
---|
756 | { |
---|
757 | int j; |
---|
758 | j = CurV->i; |
---|
759 | if (CurV->val == _CM[minI][j]) /* COLUMN j NEEDS UPDATING */ |
---|
760 | { |
---|
761 | /* FIND THE NEW MAXIMUM VALUE IN THE COLUMN */ |
---|
762 | oldVal = CurV->val; |
---|
763 | CurV->val = -INFINITY; |
---|
764 | for (CurU=uHead.Next; CurU != NULL; CurU=CurU->Next) |
---|
765 | { |
---|
766 | int i; |
---|
767 | i = CurU->i; |
---|
768 | if (CurV->val <= _CM[i][j]) |
---|
769 | CurV->val = _CM[i][j]; |
---|
770 | } |
---|
771 | |
---|
772 | /* IF NEEDED, ADJUST THE RELEVANT Delta[*][j] */ |
---|
773 | diff = oldVal - CurV->val; |
---|
774 | if (fabs(diff) < EPSILON * _maxC) |
---|
775 | for (CurU=uHead.Next; CurU != NULL; CurU=CurU->Next) |
---|
776 | Delta[CurU->i][j] += diff; |
---|
777 | } |
---|
778 | } |
---|
779 | } |
---|
780 | else /* COLUMN minJ WAS DELETED */ |
---|
781 | { |
---|
782 | for (CurU=uHead.Next; CurU != NULL; CurU=CurU->Next) |
---|
783 | { |
---|
784 | int i; |
---|
785 | i = CurU->i; |
---|
786 | if (CurU->val == _CM[i][minJ]) /* ROW i NEEDS UPDATING */ |
---|
787 | { |
---|
788 | /* FIND THE NEW MAXIMUM VALUE IN THE ROW */ |
---|
789 | oldVal = CurU->val; |
---|
790 | CurU->val = -INFINITY; |
---|
791 | for (CurV=vHead.Next; CurV != NULL; CurV=CurV->Next) |
---|
792 | { |
---|
793 | int j; |
---|
794 | j = CurV->i; |
---|
795 | if(CurU->val <= _CM[i][j]) |
---|
796 | CurU->val = _CM[i][j]; |
---|
797 | } |
---|
798 | |
---|
799 | /* If NEEDED, ADJUST THE RELEVANT Delta[i][*] */ |
---|
800 | diff = oldVal - CurU->val; |
---|
801 | if (fabs(diff) < EPSILON * _maxC) |
---|
802 | for (CurV=vHead.Next; CurV != NULL; CurV=CurV->Next) |
---|
803 | Delta[i][CurV->i] += diff; |
---|
804 | } |
---|
805 | } |
---|
806 | } |
---|
807 | } while (uHead.Next != NULL || vHead.Next != NULL); |
---|
808 | |
---|
809 | delete[] Ur; |
---|
810 | delete[] Vr; |
---|
811 | for(int k = 0; k < _n1; ++k) |
---|
812 | delete[] Delta[k]; |
---|
813 | delete[] Delta; |
---|
814 | } |
---|
815 | |
---|
816 | |
---|
817 | |
---|
818 | |
---|
819 | /********************** |
---|
820 | addBasicVariable |
---|
821 | **********************/ |
---|
822 | static void addBasicVariable(int minI, int minJ, double *S, double *D, |
---|
823 | node1_t *PrevUMinI, node1_t *PrevVMinJ, |
---|
824 | node1_t *UHead, char **_IsX, node2_t **_RowsX, node2_t **_ColsX) |
---|
825 | { |
---|
826 | double T; |
---|
827 | |
---|
828 | if (fabs(S[minI]-D[minJ]) <= EPSILON * _maxW) /* DEGENERATE CASE */ |
---|
829 | { |
---|
830 | T = S[minI]; |
---|
831 | S[minI] = 0; |
---|
832 | D[minJ] -= T; |
---|
833 | } |
---|
834 | else if (S[minI] < D[minJ]) /* SUPPLY EXHAUSTED */ |
---|
835 | { |
---|
836 | T = S[minI]; |
---|
837 | S[minI] = 0; |
---|
838 | D[minJ] -= T; |
---|
839 | } |
---|
840 | else /* DEMAND EXHAUSTED */ |
---|
841 | { |
---|
842 | T = D[minJ]; |
---|
843 | D[minJ] = 0; |
---|
844 | S[minI] -= T; |
---|
845 | } |
---|
846 | |
---|
847 | /* X(minI,minJ) IS A BASIC VARIABLE */ |
---|
848 | _IsX[minI][minJ] = 1; |
---|
849 | |
---|
850 | _EndX->val = T; |
---|
851 | _EndX->i = minI; |
---|
852 | _EndX->j = minJ; |
---|
853 | _EndX->NextC = _RowsX[minI]; |
---|
854 | _EndX->NextR = _ColsX[minJ]; |
---|
855 | _RowsX[minI] = _EndX; |
---|
856 | _ColsX[minJ] = _EndX; |
---|
857 | _EndX++; |
---|
858 | |
---|
859 | /* DELETE SUPPLY ROW ONLY IF THE EMPTY, AND IF NOT LAST ROW */ |
---|
860 | if (S[minI] == 0 && UHead->Next->Next != NULL) |
---|
861 | PrevUMinI->Next = PrevUMinI->Next->Next; /* REMOVE ROW FROM LIST */ |
---|
862 | else |
---|
863 | PrevVMinJ->Next = PrevVMinJ->Next->Next; /* REMOVE COLUMN FROM LIST */ |
---|
864 | } |
---|