[286] | 1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
[972] | 2 | // Copyright (C) 1999-2020 Maciej Komosinski and Szymon Ulatowski. |
---|
[286] | 3 | // See LICENSE.txt for details. |
---|
[109] | 4 | |
---|
[121] | 5 | #include <frams/genetics/geno.h> |
---|
[382] | 6 | #include <common/virtfile/stdiofile.h> |
---|
[109] | 7 | #include <frams/util/sstringutils.h> |
---|
[145] | 8 | #include <frams/genetics/preconfigured.h> |
---|
[109] | 9 | #include <frams/neuro/neuroimpl.h> |
---|
| 10 | #include <frams/neuro/neurofactory.h> |
---|
[391] | 11 | #include <common/loggers/loggertostdout.h> |
---|
[109] | 12 | |
---|
| 13 | /** |
---|
| 14 | @file |
---|
| 15 | Sample code: Neural network tester (can run your custom neurons) |
---|
| 16 | */ |
---|
| 17 | |
---|
[288] | 18 | #ifndef SDK_WITHOUT_FRAMS |
---|
[109] | 19 | #include <frams/mech/creatmechobj.h> |
---|
[972] | 20 | int CreatMechObject::modeltags_id = 0; |
---|
| 21 | int CreatMechObject::mechtags_id = 0; |
---|
[109] | 22 | #endif |
---|
| 23 | |
---|
[972] | 24 | ParamEntry creature_paramtab[] = { 0 }; |
---|
[109] | 25 | |
---|
| 26 | #ifdef VEYETEST |
---|
| 27 | #include <frams/neuro/impl/neuroimpl-vectoreye.h> |
---|
| 28 | |
---|
| 29 | #define N_VEye 0 |
---|
| 30 | #define N_VMotor 1 |
---|
| 31 | #define N_Mode 2 |
---|
| 32 | #define N_Fitness 3 |
---|
| 33 | #define LEARNINGSTEPS 50 |
---|
| 34 | |
---|
[972] | 35 | void veyeStep(Model &m, int step) |
---|
[109] | 36 | { |
---|
[972] | 37 | static float angle = 0; |
---|
[109] | 38 | |
---|
[972] | 39 | NeuroNetImpl::getImpl(m.getNeuro(N_Mode))->setState(step >= LEARNINGSTEPS); //0 (learning) or 1 (normal) |
---|
[109] | 40 | |
---|
[972] | 41 | NeuroImpl *ni = NeuroNetImpl::getImpl(m.getNeuro(N_VEye)); |
---|
| 42 | ((NI_VectorEye*)ni)->relpos.y = 0; |
---|
| 43 | ((NI_VectorEye*)ni)->relpos.z = 0; |
---|
| 44 | if (NeuroNetImpl::getImpl(m.getNeuro(N_Mode))->getNewState() < 0.5) |
---|
| 45 | { //learning |
---|
| 46 | ((NI_VectorEye*)ni)->relpos.x = 5.0 * sin(2 * M_PI * step / LEARNINGSTEPS); |
---|
| 47 | } |
---|
| 48 | else |
---|
| 49 | { //VMotor controls location of VEye |
---|
| 50 | angle += NeuroNetImpl::getImpl(m.getNeuro(N_VMotor))->getState(); |
---|
| 51 | angle = fmod((double)angle, M_PI * 2.0); |
---|
| 52 | ((NI_VectorEye*)ni)->relpos.x = 5 * sin(angle); |
---|
| 53 | } |
---|
[109] | 54 | |
---|
[972] | 55 | NeuroNetImpl::getImpl(m.getNeuro(N_Fitness))->setState(angle); //wymaga poprawy |
---|
| 56 | //oraz trzeba przemyslec kolejnosc get/set'ow neuronow zeby sygnal sie dobrze propagowal. |
---|
[109] | 57 | } |
---|
| 58 | #endif |
---|
| 59 | |
---|
[972] | 60 | int main(int argc, char*argv[]) |
---|
[109] | 61 | { |
---|
[972] | 62 | LoggerToStdout messages_to_stdout(LoggerBase::Enable); |
---|
| 63 | PreconfiguredGenetics genetics; |
---|
[145] | 64 | |
---|
[972] | 65 | if (argc <= 1) |
---|
[109] | 66 | { |
---|
| 67 | puts("Parameters: <genotype> [number of simulation steps]"); |
---|
[972] | 68 | return 10; |
---|
[109] | 69 | } |
---|
[972] | 70 | SString gen(argv[1]); |
---|
| 71 | if (!strcmp(gen.c_str(), "-")) |
---|
[109] | 72 | { |
---|
[972] | 73 | gen = 0; |
---|
| 74 | StdioFILEDontClose in(stdin); |
---|
| 75 | loadSString(&in, gen); |
---|
[109] | 76 | } |
---|
[972] | 77 | Geno g(gen); |
---|
| 78 | if (!g.isValid()) { puts("invalid genotype"); return 5; } |
---|
[999] | 79 | Model m(g, Model::SHAPETYPE_UNKNOWN); |
---|
[972] | 80 | if (!m.getNeuroCount()) { puts("no neural network"); return 1; } |
---|
| 81 | printf("%d neurons,", m.getNeuroCount()); |
---|
| 82 | NeuroFactory neurofac; |
---|
| 83 | neurofac.setStandardImplementation(); |
---|
| 84 | NeuroNetConfig nn_config(&neurofac); |
---|
| 85 | NeuroNetImpl *nn = new NeuroNetImpl(m, nn_config); |
---|
| 86 | int i; Neuro *n; |
---|
| 87 | if (!nn->getErrorCount()) printf(" no errors\n"); |
---|
| 88 | else |
---|
[109] | 89 | { |
---|
[972] | 90 | printf(" %d errors:", nn->getErrorCount()); |
---|
| 91 | int no_impl = 0; SString no_impl_names; |
---|
| 92 | int init_err = 0; SString init_err_names; |
---|
| 93 | for (i = 0; i < m.getNeuroCount(); i++) |
---|
[109] | 94 | { |
---|
[972] | 95 | n = m.getNeuro(i); |
---|
| 96 | NeuroImpl *ni = NeuroNetImpl::getImpl(n); |
---|
| 97 | if (!ni) |
---|
[109] | 98 | { |
---|
[972] | 99 | if (no_impl) no_impl_names += ','; |
---|
| 100 | no_impl_names += SString::sprintf("#%d.%s", i, n->getClassName().c_str()); |
---|
| 101 | no_impl++; |
---|
[109] | 102 | } |
---|
[972] | 103 | else if (ni->status == NeuroImpl::InitError) |
---|
[109] | 104 | { |
---|
[972] | 105 | if (init_err) init_err_names += ','; |
---|
| 106 | init_err_names += SString::sprintf("#%d.%s", i, n->getClassName().c_str()); |
---|
| 107 | init_err++; |
---|
[109] | 108 | } |
---|
| 109 | } |
---|
[972] | 110 | printf("\n"); |
---|
| 111 | if (no_impl) printf("%d x missing implementation (%s)\n", no_impl, no_impl_names.c_str()); |
---|
| 112 | if (init_err) printf("%d x failed initialization (%s)\n", init_err, init_err_names.c_str()); |
---|
[109] | 113 | } |
---|
[972] | 114 | int steps = 1; |
---|
| 115 | if (argc > 2) steps = atol(argv[2]); |
---|
| 116 | int st; |
---|
| 117 | printf("step"); |
---|
| 118 | for (i = 0; i < m.getNeuroCount(); i++) |
---|
[109] | 119 | { |
---|
[972] | 120 | n = m.getNeuro(i); |
---|
| 121 | printf("\t#%d.%s", i, n->getClassName().c_str()); |
---|
[109] | 122 | } |
---|
[972] | 123 | printf("\n"); |
---|
| 124 | for (st = 0; st <= steps; st++) |
---|
[109] | 125 | { |
---|
| 126 | #ifdef VEYETEST |
---|
[972] | 127 | veyeStep(m, st); |
---|
[109] | 128 | #endif |
---|
[972] | 129 | printf("%d", st); |
---|
| 130 | for (i = 0; i < m.getNeuroCount(); i++) |
---|
[109] | 131 | { |
---|
[972] | 132 | n = m.getNeuro(i); |
---|
| 133 | printf("\t%g", n->state); |
---|
[109] | 134 | } |
---|
[972] | 135 | printf("\n"); |
---|
| 136 | nn->simulateNeuroNet(); |
---|
[109] | 137 | } |
---|
[972] | 138 | neurofac.freeImplementation(); |
---|
[109] | 139 | } |
---|