import json
import math
import random
import argparse
import bisect
import time as timelib
from PIL import Image, ImageDraw, ImageFont
from scipy import stats
import numpy as np

class LoadingError(Exception):
    pass

class Drawer:

    def __init__(self, design, config_file, w=600, h=800, w_margin=10, h_margin=20):
        self.design = design
        self.width = w
        self.height = h
        self.w_margin = w_margin
        self.h_margin = h_margin
        self.w_no_margs = w - 2* w_margin
        self.h_no_margs = h - 2* h_margin

        self.colors = {
            'black' :   {'r':0,     'g':0,      'b':0},
            'red' :     {'r':100,   'g':0,      'b':0},
            'green' :   {'r':0,     'g':100,    'b':0},
            'blue' :    {'r':0,     'g':0,      'b':100},
            'yellow' :  {'r':100,   'g':100,    'b':0},
            'magenta' : {'r':100,   'g':0,      'b':100},
            'cyan' :    {'r':0,     'g':100,    'b':100},
            'orange':   {'r':100,   'g':50,     'b':0},
            'purple':   {'r':50,    'g':0,      'b':100}
        }

        self.settings = {
            'colors_of_kinds': ['red', 'green', 'blue', 'magenta', 'yellow', 'cyan', 'orange', 'purple'],
            'dots': {
                'color': {
                    'meaning': 'Lifespan',
                    'start': 'red',
                    'end': 'green',
                    'bias': 1
                    },
                'size': {
                    'meaning': 'EnergyEaten',
                    'start': 1,
                    'end': 6,
                    'bias': 0.5
                    },
                'opacity': {
                    'meaning': 'EnergyEaten',
                    'start': 0.2,
                    'end': 1,
                    'bias': 1
                    }
            },
            'lines': {
                'color': {
                    'meaning': 'adepth',
                    'start': 'black',
                    'end': 'red',
                    'bias': 3
                    },
                'width': {
                    'meaning': 'adepth',
                    'start': 0.1,
                    'end': 4,
                    'bias': 3
                    },
                'opacity': {
                    'meaning': 'adepth',
                    'start': 0.1,
                    'end': 0.8,
                    'bias': 5
                    }
            }
        }

        def merge(source, destination):
            for key, value in source.items():
                if isinstance(value, dict):
                    node = destination.setdefault(key, {})
                    merge(value, node)
                else:
                    destination[key] = value

            return destination

        if config_file != "":
            with open(config_file) as config:
                c = json.load(config)
            self.settings = merge(c, self.settings)
            #print(json.dumps(self.settings, indent=4, sort_keys=True))

    def draw_dots(self, file, min_width, max_width, max_height):
        for i in range(len(self.design.positions)):
            node = self.design.positions[i]
            if 'x' not in node:
                continue
            dot_style = self.compute_dot_style(node=i)
            self.add_dot(file, (self.w_margin+self.w_no_margs*(node['x']-min_width)/(max_width-min_width),
                               self.h_margin+self.h_no_margs*node['y']/max_height), dot_style)

    def draw_lines(self, file, min_width, max_width, max_height):
        for parent in range(len(self.design.positions)):
            par_pos = self.design.positions[parent]
            if not 'x' in par_pos:
                continue
            for child in self.design.tree.children[parent]:
                chi_pos = self.design.positions[child]
                if 'x' not in chi_pos:
                    continue
                line_style = self.compute_line_style(parent, child)
                self.add_line(file, (self.w_margin+self.w_no_margs*(par_pos['x']-min_width)/(max_width-min_width),
                                  self.h_margin+self.h_no_margs*par_pos['y']/max_height),
                                  (self.w_margin+self.w_no_margs*(chi_pos['x']-min_width)/(max_width-min_width),
                                  self.h_margin+self.h_no_margs*chi_pos['y']/max_height), line_style)

    def draw_scale(self, file, filename):
        self.add_text(file, "Generated from " + filename.split("\\")[-1], (5, 5), "start")

        start_text = ""
        end_text = ""
        if self.design.TIME == "BIRTHS":
           start_text = "Birth #0"
           end_text = "Birth #" + str(len(self.design.positions)-1)
        if self.design.TIME == "REAL":
           start_text = "Time " + str(min(self.design.tree.time))
           end_text = "Time " + str(max(self.design.tree.time))
        if self.design.TIME == "GENERATIONAL":
           start_text = "Depth " + str(self.design.props['adepth_min'])
           end_text = "Depth " + str(self.design.props['adepth_max'])

        self.add_dashed_line(file, (self.width*0.7, self.h_margin), (self.width, self.h_margin))
        self.add_text(file, start_text, (self.width, self.h_margin), "end")
        self.add_dashed_line(file, (self.width*0.7, self.height-self.h_margin), (self.width, self.height-self.h_margin))
        self.add_text(file, end_text, (self.width, self.height-self.h_margin), "end")

    def compute_property(self, part, prop, node):
        start = self.settings[part][prop]['start']
        end = self.settings[part][prop]['end']
        value = (self.design.props[self.settings[part][prop]['meaning']][node]
                 if self.settings[part][prop]['meaning'] in self.design.props else 0 )
        bias = self.settings[part][prop]['bias']
        if prop == "color":
            return self.compute_color(start, end, value, bias)
        else:
            return self.compute_value(start, end, value, bias)

    def compute_color(self, start, end, value, bias=1):
        if isinstance(value, str):
            value = int(value)
            r = self.colors[self.settings['colors_of_kinds'][value]]['r']
            g = self.colors[self.settings['colors_of_kinds'][value]]['g']
            b = self.colors[self.settings['colors_of_kinds'][value]]['b']
        else:
            start_color = self.colors[start]
            end_color = self.colors[end]
            value = 1 - (1-value)**bias
            r = start_color['r']*(1-value)+end_color['r']*value
            g = start_color['g']*(1-value)+end_color['g']*value
            b = start_color['b']*(1-value)+end_color['b']*value
        return (r, g, b)

    def compute_value(self, start, end, value, bias=1):
        value = 1 - (1-value)**bias
        return start*(1-value) + end*value

class PngDrawer(Drawer):

    def scale_up(self):
        self.width *= self.multi
        self.height *= self.multi
        self.w_margin *= self.multi
        self.h_margin *= self.multi
        self.h_no_margs *= self.multi
        self.w_no_margs *= self.multi

    def scale_down(self):
        self.width /= self.multi
        self.height /= self.multi
        self.w_margin /= self.multi
        self.h_margin /= self.multi
        self.h_no_margs /= self.multi
        self.w_no_margs /= self.multi

    def draw_design(self, filename, input_filename, multi=1, scale="SIMPLE"):
        print("Drawing...")

        self.multi=multi
        self.scale_up()

        back = Image.new('RGBA', (self.width, self.height), (255,255,255,0))

        min_width = min([x['x'] for x in self.design.positions if 'x' in x])
        max_width = max([x['x'] for x in self.design.positions if 'x' in x])
        max_height = max([x['y'] for x in self.design.positions if 'y' in x])

        self.draw_lines(back, min_width, max_width, max_height)
        self.draw_dots(back, min_width, max_width, max_height)

        if scale == "SIMPLE":
            self.draw_scale(back, input_filename)

        #back.show()
        self.scale_down()

        back.thumbnail((self.width, self.height), Image.ANTIALIAS)

        back.save(filename)

    def add_dot(self, file, pos, style):
        x, y = int(pos[0]), int(pos[1])
        r = style['r']*self.multi
        offset = (int(x - r), int(y - r))
        size = (2*int(r), 2*int(r))

        c = style['color']

        img = Image.new('RGBA', size)
        ImageDraw.Draw(img).ellipse((1, 1, size[0]-1, size[1]-1),
                                    (int(2.55*c[0]), int(2.55*c[1]), int(2.55*c[2]), int(255*style['opacity'])))
        file.paste(img, offset, mask=img)

    def add_line(self, file, from_pos, to_pos, style):
        fx, fy, tx, ty = int(from_pos[0]), int(from_pos[1]), int(to_pos[0]), int(to_pos[1])
        w = int(style['width'])*self.multi

        offset = (min(fx-w, tx-w), min(fy-w, ty-w))
        size = (abs(fx-tx)+2*w, abs(fy-ty)+2*w)

        c = style['color']

        img = Image.new('RGBA', size)
        ImageDraw.Draw(img).line((w, w, size[0]-w, size[1]-w) if (fx-tx)*(fy-ty)>0 else (size[0]-w, w, w, size[1]-w),
                                  (int(2.55*c[0]), int(2.55*c[1]), int(2.55*c[2]), int(255*style['opacity'])), w)
        file.paste(img, offset, mask=img)

    def add_dashed_line(self, file, from_pos, to_pos):
        style = {'color': (0,0,0), 'width': 1, 'opacity': 1}
        sublines = 50
        # TODO could be faster: compute delta and only add delta each time (but currently we do not use it often)
        for i in range(sublines):
            from_pos_sub = (self.compute_value(from_pos[0], to_pos[0], 2*i/(2*sublines-1), 1),
                            self.compute_value(from_pos[1], to_pos[1], 2*i/(2*sublines-1), 1))
            to_pos_sub = (self.compute_value(from_pos[0], to_pos[0], (2*i+1)/(2*sublines-1), 1),
                          self.compute_value(from_pos[1], to_pos[1], (2*i+1)/(2*sublines-1), 1))
            self.add_line(file, from_pos_sub, to_pos_sub, style)

    def add_text(self, file, text, pos, anchor, style=''):
        font = ImageFont.truetype("Vera.ttf", 16*self.multi)

        img = Image.new('RGBA', (self.width, self.height))
        draw = ImageDraw.Draw(img)
        txtsize = draw.textsize(text, font=font)
        pos = pos if anchor == "start" else (pos[0]-txtsize[0], pos[1])
        draw.text(pos, text, (0,0,0), font=font)
        file.paste(img, (0,0), mask=img)

    def compute_line_style(self, parent, child):
        return {'color': self.compute_property('lines', 'color', child),
                'width': self.compute_property('lines', 'width', child),
                'opacity': self.compute_property('lines', 'opacity', child)}

    def compute_dot_style(self, node):
        return {'color': self.compute_property('dots', 'color', node),
                'r': self.compute_property('dots', 'size', node),
                'opacity': self.compute_property('dots', 'opacity', node)}

class SvgDrawer(Drawer):
    def draw_design(self, filename, input_filename, multi=1, scale="SIMPLE"):
        print("Drawing...")
        file = open(filename, "w")

        min_width = min([x['x'] for x in self.design.positions if 'x' in x])
        max_width = max([x['x'] for x in self.design.positions if 'x' in x])
        max_height = max([x['y'] for x in self.design.positions if 'y' in x])

        file.write('<svg xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" '
                   'xmlns:xlink="http://www.w3.org/1999/xlink" version="1.0" '
                   'width="' + str(self.width) + '" height="' + str(self.height) + '">')

        self.draw_lines(file, min_width, max_width, max_height)
        self.draw_dots(file, min_width, max_width, max_height)

        if scale == "SIMPLE":
            self.draw_scale(file, input_filename)

        file.write("</svg>")
        file.close()

    def add_text(self, file, text, pos, anchor, style=''):
        style = (style if style != '' else 'style="font-family: Arial; font-size: 12; fill: #000000;"')
        # assuming font size 12, it should be taken from the style string!
        file.write('<text ' + style + ' text-anchor="' + anchor + '" x="' + str(pos[0]) + '" y="' + str(pos[1]+12) + '" >' + text + '</text>')

    def add_dot(self, file, pos, style):
        file.write('<circle ' + style + ' cx="' + str(pos[0]) + '" cy="' + str(pos[1]) + '" />')

    def add_line(self, file, from_pos, to_pos, style):
        file.write('<line ' + style + ' x1="' + str(from_pos[0]) + '" x2="' + str(to_pos[0]) +
                       '" y1="' + str(from_pos[1]) + '" y2="' + str(to_pos[1]) + '"  fill="none"/>')

    def add_dashed_line(self, file, from_pos, to_pos):
        style = 'stroke="black" stroke-width="0.5" stroke-opacity="1" stroke-dasharray="5, 5"'
        self.add_line(file, from_pos, to_pos, style)

    def compute_line_style(self, parent, child):
        return self.compute_stroke_color('lines', child) + ' ' \
               + self.compute_stroke_width('lines', child) + ' ' \
               + self.compute_stroke_opacity(child)

    def compute_dot_style(self, node):
        return self.compute_dot_size(node) + ' ' \
               + self.compute_fill_opacity(node) + ' ' \
               + self.compute_dot_fill(node)

    def compute_stroke_color(self, part, node):
        color = self.compute_property(part, 'color', node)
        return 'stroke="rgb(' + str(color[0]) + '%,' + str(color[1]) + '%,' + str(color[2]) + '%)"'

    def compute_stroke_width(self, part, node):
        return 'stroke-width="' + str(self.compute_property(part, 'width', node)) + '"'

    def compute_stroke_opacity(self, node):
        return 'stroke-opacity="' + str(self.compute_property('lines', 'opacity', node)) + '"'

    def compute_fill_opacity(self, node):
        return 'fill-opacity="' + str(self.compute_property('dots', 'opacity', node)) + '"'

    def compute_dot_size(self, node):
        return 'r="' + str(self.compute_property('dots', 'size', node)) + '"'

    def compute_dot_fill(self, node):
        color = self.compute_property('dots', 'color', node)
        return 'fill="rgb(' + str(color[0]) + '%,' + str(color[1]) + '%,' + str(color[2]) + '%)"'

class Designer:

    def __init__(self, tree, jitter=False, time="GENERATIONAL", balance="DENSITY"):
        self.props = {}

        self.tree = tree

        self.TIME = time
        self.JITTER = jitter

        if balance == "RANDOM":
            self.xmin_crowd = self.xmin_crowd_random
        elif balance == "MIN":
            self.xmin_crowd = self.xmin_crowd_min
        elif balance == "DENSITY":
            self.xmin_crowd = self.xmin_crowd_density
        else:
            raise ValueError("Error, the value of BALANCE does not match any expected value.")

    def calculate_measures(self):
        print("Calculating measures...")
        self.compute_adepth()
        self.compute_depth()
        self.compute_children()
        self.compute_kind()
        self.compute_time()
        self.compute_progress()
        self.compute_custom()

    def xmin_crowd_random(self, x1, x2, y):
        return (x1 if random.randrange(2) == 0 else x2)

    def xmin_crowd_min(self, x1, x2, y):
        x1_closest = 999999
        x2_closest = 999999
        miny = y-3
        maxy = y+3
        i = bisect.bisect_left(self.y_sorted, miny)
        while True:
            if len(self.positions_sorted) <= i or self.positions_sorted[i]['y'] > maxy:
                break
            pos = self.positions_sorted[i]

            x1_closest = min(x1_closest, abs(x1-pos['x']))
            x2_closest = min(x2_closest, abs(x2-pos['x']))

            i += 1
        return (x1 if x1_closest > x2_closest else x2)

    def xmin_crowd_density(self, x1, x2, y):
        x1_dist = 0
        x2_dist = 0
        miny = y-20
        maxy = y+20
        i_left = bisect.bisect_left(self.y_sorted, miny)
        i_right = bisect.bisect_right(self.y_sorted, maxy)
        # print("i " + str(i) + " len " + str(len(self.positions)))
        #
        # i = bisect.bisect_left(self.y_sorted, y)
        # i_left = max(0, i - 25)
        # i_right = min(len(self.y_sorted), i + 25)

        def include_pos(pos):
            nonlocal x1_dist, x2_dist

            dysq = (pos['y']-y)**2
            dx1 = pos['x']-x1
            dx2 = pos['x']-x2

            x1_dist += math.sqrt(dysq + dx1**2)
            x2_dist += math.sqrt(dysq + dx2**2)

        # optimized to draw from all the nodes, if less than 10 nodes in the range
        if len(self.positions_sorted) > i_left:
            if i_right - i_left < 10:
                for j in range(i_left, i_right):
                    include_pos(self.positions_sorted[j])
            else:
                for j in range(10):
                    pos = self.positions_sorted[random.randrange(i_left, i_right)]
                    include_pos(pos)

        return (x1 if x1_dist > x2_dist else x2)
        #print(x1_dist, x2_dist)
        #x1_dist = x1_dist**2
        #x2_dist = x2_dist**2
        #return x1 if x1_dist+x2_dist==0 else (x1*x1_dist + x2*x2_dist) / (x1_dist+x2_dist) + random.gauss(0, 0.01)
        #return (x1 if random.randint(0, int(x1_dist+x2_dist)) < x1_dist else x2)

    def calculate_node_positions(self, ignore_last=0):
        print("Calculating positions...")

        current_node = 0

        def add_node(node):
            nonlocal current_node
            index = bisect.bisect_left(self.y_sorted, node['y'])
            self.y_sorted.insert(index, node['y'])
            self.positions_sorted.insert(index, node)
            self.positions[node['id']] = node

        self.positions_sorted = [{'x':0, 'y':0, 'id':0}]
        self.y_sorted = [0]
        self.positions = [{} for x in range(len(self.tree.parents))]
        self.positions[0] = {'x':0, 'y':0, 'id':0}

        nodes_to_visit = [0]
        visited = [False] * len(self.tree.parents)
        visited[0] = True

        node_counter = 0
        start_time = timelib.time()

        while True:

            node_counter += 1
            if node_counter%1000 == 0:
                print(str(node_counter) + " " + str(timelib.time()-start_time))
                start_time = timelib.time()

            current_node = nodes_to_visit[0]

            for child in self.tree.children[current_node]:
                if not visited[child] and self.props['adepth'][child] >= ignore_last/self.props['adepth_max']:
                    nodes_to_visit.append(child)
                    visited[child] = True

                    ypos = 0
                    if self.TIME == "BIRTHS":
                        ypos = child
                    elif self.TIME == "GENERATIONAL":
                        ypos = self.positions[current_node]['y']+1
                    elif self.TIME == "REAL":
                        ypos = self.tree.time[child]

                    if len(self.tree.parents[child]) == 1:
                    # if current_node is the only parent
                        if self.JITTER:
                            dissimilarity = random.gauss(0, 0.5)
                        else:
                            dissimilarity = 1
                        add_node({'id':child, 'y':ypos, 'x':
                                 self.xmin_crowd(self.positions[current_node]['x']-dissimilarity,
                                  self.positions[current_node]['x']+dissimilarity, ypos)})
                    else:
                        total_inheretance = sum([v for k, v in self.tree.parents[child].items()])
                        xpos = sum([self.positions[k]['x']*v/total_inheretance
                                   for k, v in self.tree.parents[child].items()])
                        if self.JITTER:
                            add_node({'id':child, 'y':ypos, 'x':xpos + random.gauss(0, 0.1)})
                        else:
                            add_node({'id':child, 'y':ypos, 'x':xpos})

            nodes_to_visit = nodes_to_visit[1:]
            # if none left, we can stop
            if len(nodes_to_visit) == 0:
                print("done")
                break

    def compute_custom(self):
        for prop in self.tree.props:
            self.props[prop] = [None for x in range(len(self.tree.children))]

            for i in range(len(self.props[prop])):
                self.props[prop][i] = self.tree.props[prop][i]

            self.normalize_prop(prop)

    def compute_time(self):
        # simple rewrite from the tree
        self.props["time"] = [0 for x in range(len(self.tree.children))]

        for i in range(len(self.props['time'])):
            self.props['time'][i] = self.tree.time[i]

        self.normalize_prop('time')

    def compute_kind(self):
        # simple rewrite from the tree
        self.props["kind"] = [0 for x in range(len(self.tree.children))]

        for i in range (len(self.props['kind'])):
            self.props['kind'][i] = str(self.tree.kind[i])

    def compute_depth(self):
        self.props["depth"] = [999999999 for x in range(len(self.tree.children))]

        nodes_to_visit = [0]
        self.props["depth"][0] = 0
        while True:
            for child in self.tree.children[nodes_to_visit[0]]:
                nodes_to_visit.append(child)
                self.props["depth"][child] = min([self.props["depth"][d] for d in self.tree.parents[child]])+1
            nodes_to_visit = nodes_to_visit[1:]
            if len(nodes_to_visit) == 0:
                break

        self.normalize_prop('depth')

    def compute_adepth(self):
        self.props["adepth"] = [0 for x in range(len(self.tree.children))]

        def compute_local_adepth(node):
            my_adepth = 0
            for c in self.tree.children[node]:
                my_adepth = max(my_adepth, compute_local_adepth(c)+1)
            self.props["adepth"][node] = my_adepth
            return my_adepth

        compute_local_adepth(0)
        self.normalize_prop('adepth')

    def compute_children(self):
        self.props["children"] = [0 for x in range(len(self.tree.children))]
        for i in range (len(self.props['children'])):
            self.props['children'][i] = len(self.tree.children[i])

        self.normalize_prop('children')

    def compute_progress(self):
        self.props["progress"] = [0 for x in range(len(self.tree.children))]
        for i in range(len(self.props['children'])):
            times = sorted([self.props["time"][self.tree.children[i][j]]*100000 for j in range(len(self.tree.children[i]))])
            if len(times) > 4:
                times = [times[i+1] - times[i] for i in range(len(times)-1)]
                #print(times)
                slope, intercept, r_value, p_value, std_err = stats.linregress(range(len(times)), times)
                self.props['progress'][i] = slope if not np.isnan(slope) and not np.isinf(slope) else 0

        for i in range(0, 5):
            self.props['progress'][self.props['progress'].index(min(self.props['progress']))] = 0
            self.props['progress'][self.props['progress'].index(max(self.props['progress']))] = 0

        mini = min(self.props['progress'])
        maxi = max(self.props['progress'])
        for k in range(len(self.props['progress'])):
            if self.props['progress'][k] == 0:
                self.props['progress'][k] = mini

        #for k in range(len(self.props['progress'])):
        #        self.props['progress'][k] = 1-self.props['progress'][k]

        self.normalize_prop('progress')

    def normalize_prop(self, prop):
        noneless = [v for v in self.props[prop] if type(v)!=str]
        if len(noneless) > 0:
            max_val = max(noneless)
            min_val = min(noneless)
            print(prop, max_val, min_val)
            self.props[prop +'_max'] = max_val
            self.props[prop +'_min'] = min_val
            for i in range(len(self.props[prop])):
                if self.props[prop][i] is not None:
                    qqq = self.props[prop][i]
                    self.props[prop][i] = 0 if max_val == min_val else (self.props[prop][i] - min_val) / (max_val - min_val)

class TreeData:
    simple_data = None

    children = []
    parents = []
    time = []
    kind = []

    def __init__(self): #, simple_data=False):
        #self.simple_data = simple_data
        pass

    def load(self, filename, max_nodes=0):
        print("Loading...")

        CLI_PREFIX = "Script.Message:"
        default_props = ["Time", "FromIDs", "ID", "Operation", "Inherited"]

        self.ids = {}
        def get_id(id, createOnError = True):
            if createOnError:
                if id not in self.ids:
                    self.ids[id] = len(self.ids)
            else:
                if id not in self.ids:
                    return None
            return self.ids[id]

        file = open(filename)

        # counting the number of expected nodes
        nodes = 0
        for line in file:
            line_arr = line.split(' ', 1)
            if len(line_arr) == 2:
                if line_arr[0] == CLI_PREFIX:
                    line_arr = line_arr[1].split(' ', 1)
                if line_arr[0] == "[OFFSPRING]":
                    nodes += 1

        nodes = min(nodes, max_nodes if max_nodes != 0 else nodes)+1
        self.parents = [{} for x in range(nodes)]
        self.children = [[] for x in range(nodes)]
        self.time = [0] * nodes
        self.kind = [0] * nodes
        self.life_lenght = [0] * nodes
        self.props = {}

        print(len(self.parents))

        file.seek(0)
        loaded_so_far = 0
        lasttime = timelib.time()
        for line in file:
            line_arr = line.split(' ', 1)
            if len(line_arr) == 2:
                if line_arr[0] == CLI_PREFIX:
                    line_arr = line_arr[1].split(' ', 1)
                if line_arr[0] == "[OFFSPRING]":
                    creature = json.loads(line_arr[1])
                    if "FromIDs" in creature:

                        # make sure that ID's of parents are lower than that of their children
                        for i in range(0, len(creature["FromIDs"])):
                            if creature["FromIDs"][i] not in self.ids:
                                get_id("virtual_parent")

                        creature_id = get_id(creature["ID"])

                        # debug
                        if loaded_so_far%1000 == 0:
                            #print(". " + str(creature_id) + " " + str(timelib.time() - lasttime))
                            lasttime = timelib.time()

                        # we assign to each parent its contribution to the genotype of the child
                        for i in range(0, len(creature["FromIDs"])):
                            if creature["FromIDs"][i] in self.ids:
                                parent_id = get_id(creature["FromIDs"][i])
                            else:
                                parent_id = get_id("virtual_parent")
                            inherited = 1 #(creature["Inherited"][i] if 'Inherited' in creature else 1) #ONLY FOR NOW
                            self.parents[creature_id][parent_id] = inherited

                        if "Time" in creature:
                            self.time[creature_id] = creature["Time"]

                        if "Kind" in creature:
                            self.kind[creature_id] = creature["Kind"]

                        for prop in creature:
                            if prop not in default_props:
                                if prop not in self.props:
                                    self.props[prop] = [0 for i in range(nodes)]
                                self.props[prop][creature_id] = creature[prop]

                        loaded_so_far += 1
                    else:
                        raise LoadingError("[OFFSPRING] misses the 'FromIDs' field!")
                if line_arr[0] == "[DIED]":
                    creature = json.loads(line_arr[1])
                    creature_id = get_id(creature["ID"], False)
                    if creature_id is not None:
                        for prop in creature:
                            if prop not in default_props:
                                if prop not in self.props:
                                    self.props[prop] = [0 for i in range(nodes)]
                                self.props[prop][creature_id] = creature[prop]


            if loaded_so_far >= max_nodes and max_nodes != 0:
                break

        for k in range(len(self.parents)):
            v = self.parents[k]
            for val in self.parents[k]:
                self.children[val].append(k)

depth = {}
kind = {}

def main():

    parser = argparse.ArgumentParser(description='Draws a genealogical tree (generates a SVG file) based on parent-child relationship '
                                                 'information from a text file. Supports files generated by Framsticks experiments.')
    parser.add_argument('-i', '--in', dest='input', required=True, help='input file name with stuctured evolutionary data')
    parser.add_argument('-o', '--out', dest='output', required=True, help='output file name for the evolutionary tree (SVG/PNG/JPG/BMP)')
    parser.add_argument('-c', '--config', dest='config', default="", help='config file name ')

    parser.add_argument('-W', '--width', default=600, type=int, dest='width', help='width of the output image (600 by default)')
    parser.add_argument('-H', '--height', default=800, type=int, dest='height', help='height of the output image (800 by default)')
    parser.add_argument('-m', '--multi', default=1, type=int, dest='multi', help='multisampling factor (applicable only for raster images)')

    parser.add_argument('-t', '--time', default='GENERATIONAL', dest='time', help='values on vertical axis (BIRTHS/GENERATIONAL(d)/REAL); '
                                                                      'BIRTHS: time measured as the number of births since the beginning; '
                                                                      'GENERATIONAL: time measured as number of ancestors; '
                                                                      'REAL: real time of the simulation')
    parser.add_argument('-b', '--balance', default='DENSITY', dest='balance', help='method of placing nodes in the tree (RANDOM/MIN/DENSITY(d))')
    parser.add_argument('-s', '--scale', default='SIMPLE', dest='scale', help='type of timescale added to the tree (NONE(d)/SIMPLE)')
    parser.add_argument('-j', '--jitter', dest="jitter", action='store_true', help='draw horizontal positions of children from the normal distribution')
    parser.add_argument('-p', '--skip', dest="skip", type=int, default=0, help='skip last P levels of the tree (0 by default)')
    parser.add_argument('-x', '--max-nodes', type=int, default=0, dest='max_nodes', help='maximum number of nodes drawn (starting from the first one)')
    parser.add_argument('--seed', type=int, dest='seed', help='seed for the random number generator (-1 for random)')

    parser.set_defaults(draw_tree=True)
    parser.set_defaults(draw_skeleton=False)
    parser.set_defaults(draw_spine=False)

    parser.set_defaults(seed=-1)

    args = parser.parse_args()

    TIME = args.time.upper()
    BALANCE = args.balance.upper()
    SCALE = args.scale.upper()
    JITTER = args.jitter
    if not TIME in ['BIRTHS', 'GENERATIONAL', 'REAL']\
        or not BALANCE in ['RANDOM', 'MIN', 'DENSITY']\
        or not SCALE in ['NONE', 'SIMPLE']:
        print("Incorrect value of one of the parameters! Closing the program.") #TODO don't be lazy, figure out which parameter is wrong...
        return

    dir = args.input
    seed = args.seed
    if seed == -1:
        seed = random.randint(0, 10000)
    random.seed(seed)
    print("seed:", seed)

    tree = TreeData()
    tree.load(dir, max_nodes=args.max_nodes)

    designer = Designer(tree, jitter=JITTER, time=TIME, balance=BALANCE)
    designer.calculate_measures()
    designer.calculate_node_positions(ignore_last=args.skip)

    if args.output.endswith(".svg"):
        drawer = SvgDrawer(designer, args.config, w=args.width, h=args.height)
    else:
        drawer = PngDrawer(designer, args.config, w=args.width, h=args.height)
    drawer.draw_design(args.output, args.input, multi=args.multi, scale=SCALE)


main()
