Changeset 848
- Timestamp:
- 01/31/19 03:45:08 (6 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
cpp/common/2d.h
r778 r848 1 1 // This file is a part of Framsticks SDK. http://www.framsticks.com/ 2 // Copyright (C) 1999-201 5Maciej Komosinski and Szymon Ulatowski.2 // Copyright (C) 1999-2019 Maciej Komosinski and Szymon Ulatowski. 3 3 // See LICENSE.txt for details. 4 4 … … 9 9 #include <math.h> 10 10 11 //unifi kacja starych GUIXY iPt2D11 //unification of old GUIXY and Pt2D 12 12 template <typename T> class XY 13 13 { 14 14 public: 15 T x,y; 16 XY() {} 17 XY(T _x,T _y):x(_x),y(_y) {} 18 template <typename Q> XY(const Q& other):x(other.x),y(other.y) {} 19 template <typename Q> const XY& operator=(const Q& other) {x=other.x; y=other.y; return *this;} 20 template <typename Q> const XY operator()(const Q& other) {return XY(other.x,other.y);} 21 XY operator+(const XY&p) const {return XY(x+p.x,y+p.y);} 22 XY operator-(const XY&p) const {return XY(x-p.x,y-p.y);} 23 XY operator+=(const XY&p) {x+=p.x; y+=p.y; return *this;} 24 XY operator-=(const XY&p) {x-=p.x; y-=p.y; return *this;} 25 XY operator-() const {return XY(-x,-y);} 26 XY operator*=(T q) {x*=q; y*=q; return *this;} 27 XY operator/=(T q) {x/=q; y/=q; return *this;} 28 XY operator/(T q) {return XY(x/q,y/q);} 29 XY operator*(T q) const {return XY(q*x,q*y);} 30 void set(T _x,T _y) {x=_x; y=_y;} 31 void add(T _x,T _y) {x+=_x; y+=_y;} 32 void sub(T _x,T _y) {x-=_x; y-=_y;} 33 bool operator==(const XY& p) const {return (fabs(double(x-p.x))<1e-20)&&(fabs(double(y-p.y))<1e-20);} 34 T distanceTo(const XY& p) const {return sqrt(double((p.x-x)*(p.x-x)+(p.y-y)*(p.y-y)));} 35 T magnitude() const {return sqrt(x*x+y*y);} 36 T length() const {return sqrt(x*x+y*y);} 37 T lengthSq() const { return x*x + y*y; } 38 T dotProduct(const XY& v) const {return x*v.x + y*v.y;} 39 T crossProduct(const XY& v) const {return x*v.y - y*v.x;} 40 void normalize() { operator/=(length()); } // length becomes 1 41 static XY average(const XY& v1,const XY& v2) { return XY((v1.x+v2.x)*0.5,(v1.y+v2.y)*0.5); } 42 double getDirection() const {return atan2(y,x);} 43 static XY interpolate(const XY& v1, const XY& v2,double t) {return v1+(v2-v1)*t;} 44 XY toInt() const {return XY(int(x),int(y));} 45 static const XY& zero() {static XY t(0,0); return t;} 46 static const XY& one() {static XY t(1,1); return t;} 15 T x, y; 16 XY() {} 17 XY(T _x, T _y) :x(_x), y(_y) {} 18 template <typename Q> XY(const Q& other) : x(other.x), y(other.y) {} 19 template <typename Q> const XY& operator=(const Q& other) { x = other.x; y = other.y; return *this; } 20 template <typename Q> const XY operator()(const Q& other) { return XY(other.x, other.y); } 21 XY operator+(const XY&p) const { return XY(x + p.x, y + p.y); } 22 XY operator-(const XY&p) const { return XY(x - p.x, y - p.y); } 23 XY operator+=(const XY&p) { x += p.x; y += p.y; return *this; } 24 XY operator-=(const XY&p) { x -= p.x; y -= p.y; return *this; } 25 XY operator-() const { return XY(-x, -y); } 26 // allows float operations on ints 27 template <typename Q> XY operator*=(Q q) { x *= q; y *= q; return *this; } 28 template <typename Q> XY operator/=(Q q) { x /= q; y /= q; return *this; } 29 template <typename Q> XY operator/(Q q) { return XY(x / q, y / q); } 30 template <typename Q> XY operator*(Q q) const { return XY(q*x, q*y); } 31 void set(T _x, T _y) { x = _x; y = _y; } 32 void add(T _x, T _y) { x += _x; y += _y; } 33 void sub(T _x, T _y) { x -= _x; y -= _y; } 34 bool operator==(const XY& p) const { return (fabs(double(x - p.x)) < 1e-20) && (fabs(double(y - p.y)) < 1e-20); } 35 bool operator!=(const XY& p) const { return !operator==(p); } 36 T distanceTo(const XY& p) const { return sqrt(double((p.x - x)*(p.x - x) + (p.y - y)*(p.y - y))); } 37 T magnitude() const { return sqrt(x*x + y * y); } 38 T length() const { return sqrt(x*x + y * y); } 39 T lengthSq() const { return x * x + y * y; } 40 T dotProduct(const XY& v) const { return x * v.x + y * v.y; } 41 T crossProduct(const XY& v) const { return x * v.y - y * v.x; } 42 void normalize() { operator/=(length()); } // length becomes 1 43 static XY average(const XY& v1, const XY& v2) { return XY((v1.x + v2.x)*0.5, (v1.y + v2.y)*0.5); } 44 double getDirection() const { return atan2(y, x); } 45 static XY interpolate(const XY& v1, const XY& v2, double t) { return v1 + (v2 - v1)*t; } 46 XY toInt() const { return XY(int(x), int(y)); } 47 XY transpose() const { return XY(y, x); } 48 static const XY& zero() { static XY t(0, 0); return t; } 49 static const XY& one() { static XY t(1, 1); return t; } 47 50 }; 48 51 49 template <typename T> XY<T> xymin(const XY<T>& a, const XY<T>& b) {return XY<T>(min(a.x,b.x),min(a.y,b.y));} 50 template <typename T> XY<T> xymax(const XY<T>& a, const XY<T>& b) {return XY<T>(max(a.x,b.x),max(a.y,b.y));} 52 //specialized: int equality not using fabs() 53 template<> inline bool XY<int>::operator==(const XY<int>& p) const { return (x == p.x) && (y == p.y); } 54 55 template <typename T> XY<T> xymin(const XY<T>& a, const XY<T>& b) { return XY<T>(min(a.x, b.x), min(a.y, b.y)); } 56 template <typename T> XY<T> xymax(const XY<T>& a, const XY<T>& b) { return XY<T>(max(a.x, b.x), max(a.y, b.y)); } 51 57 52 58 template <typename T> 53 59 class XYMargin 54 60 { 55 56 XYMargin(T x =0):left(x),top(x),right(x),bottom(x) {}57 XYMargin(T l, T t,T r,T b):left(l),top(t),right(r),bottom(b) {}58 T left, top,right,bottom;59 void operator=(T x) { left=top=right=bottom=x;}60 XYMargin operator-() const { return XYMargin(-left,-top,-right,-bottom);}61 void operator=(const XYMargin<T> &other) { left=other.left; top=other.top; right=other.right; bottom=other.bottom;}62 T horizontal() const { return left+right;}63 T vertical() const { return top+bottom;}64 bool operator==(const XYMargin &other) const { return left==other.left && top==other.top && right==other.right && bottom==other.bottom;}65 XYMargin normalized() const { return XYMargin(max(left,T(0)),max(top,T(0)),max(right,T(0)),max(bottom,T(0)));}61 public: 62 XYMargin(T x = 0) :left(x), top(x), right(x), bottom(x) {} 63 XYMargin(T l, T t, T r, T b) :left(l), top(t), right(r), bottom(b) {} 64 T left, top, right, bottom; 65 void operator=(T x) { left = top = right = bottom = x; } 66 XYMargin operator-() const { return XYMargin(-left, -top, -right, -bottom); } 67 void operator=(const XYMargin<T> &other) { left = other.left; top = other.top; right = other.right; bottom = other.bottom; } 68 T horizontal() const { return left + right; } 69 T vertical() const { return top + bottom; } 70 bool operator==(const XYMargin &other) const { return left == other.left && top == other.top && right == other.right && bottom == other.bottom; } 71 XYMargin normalized() const { return XYMargin(max(left, T(0)), max(top, T(0)), max(right, T(0)), max(bottom, T(0))); } 66 72 }; 67 73 … … 70 76 { 71 77 public: 72 XY<T> p,size;73 XYRect() {}74 XYRect(const XY<T>& p1,const XY<T>& s):p(p1),size(s) {}75 template <typename Q> XYRect(const Q& other):p(other.p),size(other.size) {}76 XYRect(T _x,T _y,T _w,T _h):p(_x,_y),size(_w,_h) {}77 static XYRect<T> centeredAt(const XY<T>& p,XY<T> s) {return XYRect<T>(p-s*0.5,s);}78 XY<T> p, size; 79 XYRect() {} 80 XYRect(const XY<T>& p1, const XY<T>& s) :p(p1), size(s) {} 81 template <typename Q> XYRect(const Q& other) : p(other.p), size(other.size) {} 82 XYRect(T _x, T _y, T _w, T _h) :p(_x, _y), size(_w, _h) {} 83 static XYRect<T> centeredAt(const XY<T>& p, XY<T> s) { return XYRect<T>(p - s * 0.5, s); } 78 84 79 bool isEmpty() const {return (size.x<0)||(size.y<0);}80 XYRect toInt() const {return XYRect(int(p.x),int(p.y),int(p.x+size.x)-int(p.x),int(p.y+size.y)-int(p.y));}81 bool operator==(const XYRect& r) const {return (p==r.p) && (size==r.size);}82 template <typename Q> const XYRect& operator=(const Q& other) {p=other.p; size=other.size; return *this;}85 bool isEmpty() const { return (size.x < 0) || (size.y < 0); } 86 XYRect toInt() const { return XYRect(int(p.x), int(p.y), int(p.x + size.x) - int(p.x), int(p.y + size.y) - int(p.y)); } 87 bool operator==(const XYRect& r) const { return (p == r.p) && (size == r.size); } 88 template <typename Q> const XYRect& operator=(const Q& other) { p = other.p; size = other.size; return *this; } 83 89 84 bool intersects(const XYRect& r) const85 {86 if (r.p.x >= (p.x+size.x)) return false;87 if (r.p.y >= (p.y+size.y)) return false;88 if ((r.p.x+r.size.x) <= p.x) return false;89 if ((r.p.y+r.size.y) <= p.y) return false;90 return true;91 }90 bool intersects(const XYRect& r) const 91 { 92 if (r.p.x >= (p.x + size.x)) return false; 93 if (r.p.y >= (p.y + size.y)) return false; 94 if ((r.p.x + r.size.x) <= p.x) return false; 95 if ((r.p.y + r.size.y) <= p.y) return false; 96 return true; 97 } 92 98 93 bool contains(const XY<T>& n) const94 {95 if (n.x<p.x) return false;96 if (n.x>(p.x+size.x)) return false;97 if (n.y<p.y) return false;98 if (n.y>(p.y+size.y)) return false;99 return true;100 }99 bool contains(const XY<T>& n) const 100 { 101 if (n.x < p.x) return false; 102 if (n.x > (p.x + size.x)) return false; 103 if (n.y < p.y) return false; 104 if (n.y > (p.y + size.y)) return false; 105 return true; 106 } 101 107 102 void add(const XY<T>& n)103 {104 if (n.x<p.x) {size.x+=p.x-n.x; p.x=n.x;}105 else if (n.x>(p.x+size.x)) size.x=n.x-p.x;106 if (n.y<p.y) {size.y+=p.y-n.y; p.y=n.y;}107 else if (n.y>(p.y+size.y)) size.y=n.y-p.y;108 }108 void add(const XY<T>& n) 109 { 110 if (n.x < p.x) { size.x += p.x - n.x; p.x = n.x; } 111 else if (n.x > (p.x + size.x)) size.x = n.x - p.x; 112 if (n.y < p.y) { size.y += p.y - n.y; p.y = n.y; } 113 else if (n.y > (p.y + size.y)) size.y = n.y - p.y; 114 } 109 115 110 XYRect extendBy(const XY<T>& border_size) const111 {112 return XYRect(p-border_size,size+border_size*2);113 }116 XYRect extendBy(const XY<T>& border_size) const 117 { 118 return XYRect(p - border_size, size + border_size * 2); 119 } 114 120 115 XYRect shrinkBy(const XY<T>& border_size) const116 {117 return XYRect(p+border_size,size-border_size*2); 118 }121 XYRect shrinkBy(const XY<T>& border_size) const 122 { 123 return XYRect(p + border_size, size - border_size * 2); 124 } 119 125 120 XYRect extendBy(const XYMargin<T>& m) const121 {122 return XYRect(p.x-m.left,p.y-m.top,size.x+m.horizontal(),size.y+m.vertical());123 }126 XYRect extendBy(const XYMargin<T>& m) const 127 { 128 return XYRect(p.x - m.left, p.y - m.top, size.x + m.horizontal(), size.y + m.vertical()); 129 } 124 130 125 XYRect shrinkBy(const XYMargin<T>& m) const126 {127 return XYRect(p.x+m.left,p.y+m.top,size.x-m.horizontal(),size.y-m.vertical());128 }131 XYRect shrinkBy(const XYMargin<T>& m) const 132 { 133 return XYRect(p.x + m.left, p.y + m.top, size.x - m.horizontal(), size.y - m.vertical()); 134 } 129 135 130 XYMargin<T> marginTowards(const XYRect &r) const131 {132 return XYMargin<T>(r.p.x-p.x, r.p.y-p.y,133 (p.x+size.x)-(r.p.x+r.size.x), (p.y+size.y)-(r.p.y+r.size.y));134 }136 XYMargin<T> marginTowards(const XYRect &r) const 137 { 138 return XYMargin<T>(r.p.x - p.x, r.p.y - p.y, 139 (p.x + size.x) - (r.p.x + r.size.x), (p.y + size.y) - (r.p.y + r.size.y)); 140 } 135 141 136 XYRect intersection(const XYRect& r) const137 {138 XYRect i;139 XY<T> p2=p+size;140 XY<T> rp2=r.p+r.size;141 i.p.x=max(p.x,r.p.x);142 i.p.y=max(p.y,r.p.y);143 i.size.x=min(p2.x,rp2.x)-i.p.x;144 i.size.y=min(p2.y,rp2.y)-i.p.y;145 return i;146 }142 XYRect intersection(const XYRect& r) const 143 { 144 XYRect i; 145 XY<T> p2 = p + size; 146 XY<T> rp2 = r.p + r.size; 147 i.p.x = max(p.x, r.p.x); 148 i.p.y = max(p.y, r.p.y); 149 i.size.x = min(p2.x, rp2.x) - i.p.x; 150 i.size.y = min(p2.y, rp2.y) - i.p.y; 151 return i; 152 } 147 153 148 XYRect translation(const XY<T>& t) const149 {150 return XYRect(p+t,size);151 }154 XYRect translation(const XY<T>& t) const 155 { 156 return XYRect(p + t, size); 157 } 152 158 153 T distanceTo(const XY<T>& n) const154 {155 XY<T> tp=n;156 if (n.x<p.x) tp.x=p.x; else if (n.x>=(p.x+size.x)) tp.x=p.x+size.x;157 if (n.y<p.y) tp.y=p.y; else if (n.y>=(p.y+size.y)) tp.y=p.y+size.y;158 159 }159 T distanceTo(const XY<T>& n) const 160 { 161 XY<T> tp = n; 162 if (n.x < p.x) tp.x = p.x; else if (n.x >= (p.x + size.x)) tp.x = p.x + size.x; 163 if (n.y < p.y) tp.y = p.y; else if (n.y >= (p.y + size.y)) tp.y = p.y + size.y; 164 return tp.distanceTo(n); 165 } 160 166 161 static const XYRect& zero() {static XYRect t(0,0,0,0); return t;}162 static const XYRect& one() {static XYRect t(0,0,1,1); return t;}167 static const XYRect& zero() { static XYRect t(0, 0, 0, 0); return t; } 168 static const XYRect& one() { static XYRect t(0, 0, 1, 1); return t; } 163 169 }; 164 170
Note: See TracChangeset
for help on using the changeset viewer.