Changeset 1273 for cpp/frams/genetics/fL


Ignore:
Timestamp:
09/09/23 15:10:49 (16 months ago)
Author:
Maciej Komosinski
Message:

fH, fB, fL: improved default parameter values, syntax coloring and code logic

Location:
cpp/frams/genetics/fL
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • cpp/frams/genetics/fL/fL_general.cpp

    r973 r1273  
    11// This file is a part of Framsticks SDK.  http://www.framsticks.com/
    2 // Copyright (C) 1999-2020  Maciej Komosinski and Szymon Ulatowski.
     2// Copyright (C) 1999-2023  Maciej Komosinski and Szymon Ulatowski.
    33// See LICENSE.txt for details.
    44
     
    99#include <iterator>
    1010
    11 const char *fL_part_names[FL_PART_PROPS_COUNT] = { "dn", "fr", "ing", "as" };
    12 const char *fL_part_fullnames[FL_PART_PROPS_COUNT] = { "details", "friction", "ingestion", "assimilation" };
    13 
    14 const char *fL_joint_names[FL_JOINT_PROPS_COUNT] = { "stif", "rotstif", "stam" };
    15 const char *fL_joint_fullnames[FL_JOINT_PROPS_COUNT] = { "stiffness", "rotation stiffness", "stamina" };
     11const char *fL_part_names[FL_PART_PROPS_COUNT] = { "fr" }; // "dn", "ing", "as" };
     12const char *fL_part_fullnames[FL_PART_PROPS_COUNT] = { "friction" }; // "density", "ingestion", "assimilation" };
     13
     14const char *fL_joint_names[FL_JOINT_PROPS_COUNT] = { "rotstif" }; //"stif", , "stam" }; //see the comment to fH_joint_names in fH_general.cpp
     15const char *fL_joint_fullnames[FL_JOINT_PROPS_COUNT] = { "rotation stiffness" }; //"stiffness", "stamina" };
    1616
    1717#define FIELDSTRUCT fL_Word
     
    502502        fL_Word *stick = new fL_Word(true);
    503503        stick->name = "S";
    504         stick->npar = 8;
     504        stick->npar = FL_PART_PROPS_COUNT + FL_JOINT_PROPS_COUNT + 1; //MacKo 2023-07: was hardcoded "8" but crashed when the number of props in Part and Joint was decreased; I think it should be like it is now (4+3+1 - or another value depending on prop counts)
    505505        for (int i = 0; i < FL_PART_PROPS_COUNT; i++)
    506506        {
    507507                stick->mut.addProperty(NULL, fL_part_names[i], "s", fL_part_fullnames[i], fL_part_fullnames[i], PARAM_CANOMITNAME, 0, -1);
    508508        }
    509 
    510509        for (int i = 0; i < FL_JOINT_PROPS_COUNT; i++)
    511510        {
     
    10961095                                        {
    10971096                                                delete newpart;
    1098                                                 logMessage("fL_Builder", "developModel", LOG_ERROR,
    1099                                                         "Error parsing word parameter");
     1097                                                logMessage("fL_Builder", "developModel", LOG_ERROR, "Error parsing word parameter");
    11001098                                                return 1;
    11011099                                        }
     
    11231121                                                if (word->parevals[FL_PART_PROPS_COUNT + i]->evaluateRPN(jointprop) != 0)
    11241122                                                {
    1125                                                         logMessage("fL_Builder", "developModel", LOG_ERROR,
    1126                                                                 "Error parsing word parameter");
     1123                                                        logMessage("fL_Builder", "developModel", LOG_ERROR, "Error parsing word parameter");
    11271124                                                        delete newjoint;
    11281125                                                        return 1;
     
    11531150                                }
    11541151                                model->addNeuro(neu);
     1152
     1153
     1154                                // MacKo 2023-07: embody (i.e., attach to body) sensors and effectors.
     1155                                // Ad hoc modification; should be reconsidered as it was added without reminding and understanding of the entire logic of the phenotype development and assumptions, and may not be "the best performing" or "the most reasonable" approach. Without this embodiment, genotypes with sensors and effectors not attached to body had warnings (such neurons "could not be initialized") so such genotypes were not accepted when creatwarnfail==1; even with creatwarnfail==0, non-embodied sensor and effector neurons were useless.
     1156                                //printf("Neuron: -------------- %s\n", details.c_str());
     1157                                switch (neu->getClass()->getPreferredLocation())
     1158                                {
     1159                                case NeuroClass::PrefLocation::PREFER_PART: //attach to currstate.currpart
     1160                                        if (currstate.currpart != NULL)
     1161                                                neu->attachToPart(currstate.currpart);
     1162                                        break;
     1163                                case NeuroClass::PrefLocation::PREFER_JOINT: //attach to the last joint incident with currstate.currpart
     1164                                        if (currstate.currpart != NULL)
     1165                                        {
     1166                                                Joint *j = NULL;
     1167                                                for (int i = 0; i < model->getJointCount(); i++)
     1168                                                {
     1169                                                        Joint *jj = model->getJoint(i);
     1170                                                        if (jj->part1 == currstate.currpart || jj->part2 == currstate.currpart)
     1171                                                                j = jj;
     1172                                                }
     1173                                                if (j != NULL)
     1174                                                        neu->attachToJoint(j);
     1175                                        }
     1176                                        break;
     1177                                default:
     1178                                        break;
     1179                                }
     1180
     1181
    11551182                                if (using_mapping) neu->addMapping(IRange(word->begin, word->end));
    11561183                                if (neu->getClass()->getPreferredInputs() != 0)
     
    12511278                        {
    12521279                                connsbuffer[i].second->addInput(connsbuffer[i].second, weight);
    1253                                 if (using_mapping) neu->addMapping(
     1280                                if (using_mapping) connsbuffer[i].second->addMapping( //MacKo 2023-07: changed 'neu' (which is NULL here so crashed) to connsbuffer[i].second (no guarantee this is a proper fix, only inspired by the analogy to the difference in both branches of "if" in the line above)
    12541281                                        IRange((*connsbuffer[i].first)->begin,
    12551282                                                (*connsbuffer[i].first)->end));
  • cpp/frams/genetics/fL/fL_general.h

    r821 r1273  
    11// This file is a part of Framsticks SDK.  http://www.framsticks.com/
    2 // Copyright (C) 1999-2018  Maciej Komosinski and Szymon Ulatowski.
     2// Copyright (C) 1999-2023  Maciej Komosinski and Szymon Ulatowski.
    33// See LICENSE.txt for details.
    44
     
    2525/** @name Constants used in fL methods */
    2626//@{
    27 #define FL_PART_PROPS_COUNT   4 ///<Count of part properties
    28 #define FL_JOINT_PROPS_COUNT  3 ///<Count of joint properties
     27#define FL_PART_PROPS_COUNT   1 ///<Count of part properties
     28#define FL_JOINT_PROPS_COUNT  1 ///<Count of joint properties
    2929#define FL_PE_NEURO_DET       "d" ///<Id of details type definition in f0_neuro_paramtab
    3030#define FL_PE_CONN_WEIGHT     "w" ///<Id of weight type definition in f0_neuroconn_paramtab
    3131#define FL_PE_CONN_ATTR       "attr" ///<Id of attractor of neural connection
    3232#define FL_DEFAULT_LENGTH     1.0 ///<Default length of a stick in fL encoding
    33 #define FL_MINIMAL_LENGTH     0.0 ///<Minimal length of a stick in fL encoding
     33#define FL_MINIMAL_LENGTH     0.1 ///<Minimal length of a stick in fL encoding
    3434#define FL_MAXIMAL_LENGTH     2.0 ///<Maximal length of a stick in fL encoding
    3535#define FL_MAXITER           "100.0" ///<Maximal iteration available in fL
     
    404404
    405405        /**
    406          * Developes L-System from given genotype and builds Framsticks Model from it.
    407          * When using_checkpoints is enabled, method generates checkpoint for each
    408          * step defined in timestamp.
    409          * @param neededtime reference to a time value after stopping development (usually it will be equal to time specified in the time field, unless the number of allowed words will be exceeded earlier)
     406         * Develops an L-System from a given genotype and builds a Framsticks Model from it.
     407         * When using_checkpoints is enabled, this method generates a checkpoint for each
     408         * step defined in the timestamp.
     409         * @param neededtime reference to a time value after stopping development (usually it will be equal to the time specified in the time field, unless the number of allowed words will be exceeded earlier)
    410410         * @return final model from a fL genotype
    411411         */
     
    413413
    414414        /**
    415          * Creates new checkpoint for a given model based on current state of genotype.
    416          * @param model reference to model
    417          * @return 0 if developing went successfully, 1 otherwise
     415         * Creates a new checkpoint for a given model based on the current state of the genotype.
     416         * @param model reference to the model
     417         * @return 0 if the development was successfull, 1 otherwise
    418418         */
    419419        int buildModelFromSequence(Model *model);
  • cpp/frams/genetics/fL/fL_oper.cpp

    r1075 r1273  
    11// This file is a part of Framsticks SDK.  http://www.framsticks.com/
    2 // Copyright (C) 1999-2020  Maciej Komosinski and Szymon Ulatowski.
     2// Copyright (C) 1999-2023  Maciej Komosinski and Szymon Ulatowski.
    33// See LICENSE.txt for details.
    44
     
    88#include <algorithm>
    99
     10
     11
     12//TODO fix: occasionally happens (note that fL extensively uses Param parsing, see fL_word_paramtab): Param.loadSingleLine: Unknown property 'Word.w0(n1' (ignored)
     13//TODO reconsider and maybe improve sensor and effector embodiment; see "MacKo 2023-07: embody" in fL_general.cpp.
     14
     15
     16
    1017#define FIELDSTRUCT Geno_fL
    1118static ParamEntry geno_fL_paramtab[] =
     
    1421        {"Genetics: fL: Probabilities of mutating axiom and rules", },
    1522        {"Genetics: fL: Probabilities of mutation types", },
    16         {"fL_maxdefinedwords", 0, 0, "Maximum number of defined words", "d 0 100 10", FIELD(maxdefinedwords), "Maximum number of words that can be defined in L-System", },
    17 
    18         {"fL_axm_mut_prob", 1, 0, "Axiom mutation", "f 0 1 0.2", FIELD(groupprobabilities[FL_AXM_WORD_MUT_PROB]), "Probability of performing mutation operations on axiom", },
    19         {"fL_rul_mut_prob", 1, 0, "Rule's successor mutation", "f 0 1 0.8", FIELD(groupprobabilities[FL_RUL_WORD_MUT_PROB]), "Probability of performing mutation operations on the successor of random rule", },
    20 
    21         {"fL_mut_addition", 2, 0, "Addition of word to sequence", "f 0 1 0.2", FIELD(operations[FL_ADD_WORD]), "Probability of adding random existing word to the axiom or one of successors", },
    22 
    23         {"fL_mut_add_stick", 2, 0, " - addition of stick", "f 0 1 0.2", FIELD(addtypes[FL_ADD_STICK]), "Probability of adding stick", },
    24         {"fL_mut_add_neuro", 2, 0, " - addition of neuron", "f 0 1 0.2", FIELD(addtypes[FL_ADD_NEURO]), "Probability of adding neuron", },
    25         {"fL_mut_add_conn", 2, 0, " - addition of neuron connection", "f 0 1 0.2", FIELD(addtypes[FL_ADD_CONN]), "Probability of adding connection", },
    26         {"fL_mut_add_rot", 2, 0, " - addition of rotation words", "f 0 1 0.2", FIELD(addtypes[FL_ADD_ROT]), "Probability of adding one of rotation words", },
    27         {"fL_mut_add_branch", 2, 0, " - addition of branched stick", "f 0 1 0.2", FIELD(addtypes[FL_ADD_BRANCH]), "Probability of adding branch with rotation and stick", },
    28         {"fL_mut_add_other", 2, 0, " - addition of defined words", "f 0 1 0.4", FIELD(addtypes[FL_ADD_OTHER]), "Probability of adding other word, defined in genotype", },
    29 
    30         {"fL_mut_worddefaddition", 2, 0, "Addition of new word definition", "f 0 1 0.05", FIELD(operations[FL_ADD_WDEF]), "Probability of adding new word definition to the genotype", },
    31         {"fL_mut_ruleaddition", 2, 0, "Addition of new rule definition", "f 0 1 0.1", FIELD(operations[FL_ADD_RULE]), "Probability of adding new rule definition for existing word", },
    32         {"fL_mut_rulecond", 2, 0, "Modification of rule condition", "f 0 1 0.1", FIELD(operations[FL_CHG_COND]), "Probability of modifying random rule condition", },
    33 
    34         {"fL_mut_changeword", 2, 0, "Change of random word", "f 0 1 0.3", FIELD(operations[FL_CHG_WORD]), "Probability of changing word name or formula of a random word from axiom or one of successors", },
    35         {"fL_mut_changeword_formula", 2, 0, " - change of formula", "f 0 1 0.7", FIELD(chgoperations[FL_CHG_WORD_FORMULA]), "Probability of changing formula in word", },
    36         {"fL_mut_changeword_name", 2, 0, " - change of name", "f 0 1 0.3", FIELD(chgoperations[FL_CHG_WORD_NAME]), "Probability of changing name in word", },
    37 
    38         {"fL_mut_changeiter", 2, 0, "Change of L-System iteration", "f 0 1 0.3", FIELD(operations[FL_CHG_ITER]), "Probability of changing number of iterations of L-Systems", },
    39         {"fL_mut_changeiter_step", 2, 0, "Step of iteration changing", "f 0 1 1.0", FIELD(iterchangestep), "Minimal step that should be used for changing iterations in L-Systems", },
    40         {"fL_mut_deletion", 2, 0, "Deletion of random word", "f 0 1 0.2", FIELD(operations[FL_DEL_WORD]), "Probability of deleting random word from axiom or random successor (also deletes rule if there is only one word in successor)", },
     23        {"fL_maxdefinedwords", 0, 0, "Maximum number of defined words", "d 0 100 10", FIELD(maxdefinedwords), "Maximum number of words that can be defined in the L-System", },
     24
     25        {"fL_axm_mut_prob", 1, 0, "Axiom mutation", "f 0 100 4", FIELD(groupprobabilities[FL_AXM_WORD_MUT_PROB]), "Probability of performing mutation operations on axiom", },
     26        {"fL_rul_mut_prob", 1, 0, "Rule's successor mutation", "f 0 100 1", FIELD(groupprobabilities[FL_RUL_WORD_MUT_PROB]), "Probability of performing mutation operations on the successor of a random rule", },
     27
     28        {"fL_mut_addition", 2, 0, "Addition of a word to a sequence", "f 0 100 4", FIELD(operations[FL_ADD_WORD]), "Probability of adding a random existing word to the axiom or to one of successors", },
     29
     30        {"fL_mut_add_stick", 2, 0, " - addition of a stick", "f 0 100 1", FIELD(addtypes[FL_ADD_STICK]), "Probability of adding a stick", },
     31        {"fL_mut_add_neuro", 2, 0, " - addition of a neuron", "f 0 100 4", FIELD(addtypes[FL_ADD_NEURO]), "Probability of adding a neuron", },
     32        {"fL_mut_add_conn", 2, 0, " - addition of a neuron connection", "f 0 100 4", FIELD(addtypes[FL_ADD_CONN]), "Probability of adding a neuron connection", },
     33        {"fL_mut_add_rot", 2, 0, " - addition of rotation words", "f 0 100 2", FIELD(addtypes[FL_ADD_ROT]), "Probability of adding one of rotation words", },
     34        {"fL_mut_add_branch", 2, 0, " - addition of a branched stick", "f 0 100 4", FIELD(addtypes[FL_ADD_BRANCH]), "Probability of adding a branch with a rotation and a stick", },
     35        {"fL_mut_add_other", 2, 0, " - addition of defined words", "f 0 100 1", FIELD(addtypes[FL_ADD_OTHER]), "Probability of adding another word defined in the genotype", },
     36
     37        {"fL_mut_worddefaddition", 2, 0, "Addition of a new word definition", "f 0 100 1", FIELD(operations[FL_ADD_WDEF]), "Probability of adding a new word definition to the genotype", },
     38        {"fL_mut_ruleaddition", 2, 0, "Addition of a new rule definition", "f 0 100 1", FIELD(operations[FL_ADD_RULE]), "Probability of adding a new rule definition for an existing word", },
     39        {"fL_mut_rulecond", 2, 0, "Modification of a rule condition", "f 0 100 1", FIELD(operations[FL_CHG_COND]), "Probability of modifying a random rule condition", },
     40
     41        {"fL_mut_changeword", 2, 0, "Change a random word", "f 0 100 4", FIELD(operations[FL_CHG_WORD]), "Probability of changing a word name or a formula of a random word from an axiom or one of successors", },
     42        {"fL_mut_changeword_formula", 2, 0, " - change of a formula", "f 0 100 4", FIELD(chgoperations[FL_CHG_WORD_FORMULA]), "Probability of changing a formula in a word", },
     43        {"fL_mut_changeword_name", 2, 0, " - change of a name", "f 0 100 2", FIELD(chgoperations[FL_CHG_WORD_NAME]), "Probability of changing a name in a word", },
     44
     45        {"fL_mut_changeiter", 2, 0, "Change the number of iterations", "f 0 100 1", FIELD(operations[FL_CHG_ITER]), "Probability of changing the number of iterations of the L-System", },
     46        {"fL_mut_changeiter_step", 2, 0, "Step of the iteration change", "f 0 1 1.0", FIELD(iterchangestep), "The minimal step that should be used for changing iterations in the L-System", },
     47        {"fL_mut_deletion", 2, 0, "Deletion of a random word", "f 0 100 4", FIELD(operations[FL_DEL_WORD]), "Probability of deleting a random word from an axiom or a random successor (also deletes the rule if there is only one word in the successor)", },
    4148        { 0, },
    4249};
     
    6673        if (builder.countSticksInSequence(&builder.genotype) == 0)
    6774        {
    68                 return GENOPER_OPFAIL;
     75                return 1;
    6976        }
    7077        double neededtime = 0;
    7178        Model *m = builder.developModel(neededtime);
    72         if (!m)
    73         {
    74                 return GENOPER_OPFAIL;
     79        if (m == NULL)
     80        {
     81                return 1;
    7582        }
    7683        if (!m->isValid())
    7784        {
    7885                delete m;
    79                 return GENOPER_OPFAIL;
     86                return 1;
    8087        }
    8188        delete m;
    82 
    8389
    8490        return GENOPER_OK;
     
    9399        if (err != 0)
    94100        {
    95                 return err;
     101                return GENOPER_OK;
    96102        }
    97103        double neededtime = 0;
    98104        Model *m = builder.developModel(neededtime);
     105        if (m == NULL)
     106        {
     107                return GENOPER_OK;
     108        }
    99109        if (!m->isValid())
    100110        {
    101111                delete m;
    102                 return GENOPER_OPFAIL;
     112                return GENOPER_OK;
    103113        }
    104114        if (neededtime != builder.time)
     
    171181        else
    172182        {
    173                 int rid = rndUint(creature->rules.size());
     183                int rid = rndUint((unsigned int)creature->rules.size());
    174184                list = &creature->rules[rid]->objsucc;
    175185                numparams = creature->rules[rid]->objpred->npar;
     
    303313                if (creature->rules.size() > 0)
    304314                {
    305                         int ruleid = rndUint(creature->rules.size());
     315                        int ruleid = rndUint((unsigned int)creature->rules.size());
    306316                        if (!creature->rules[ruleid]->condeval)
    307317                        {
     
    340350                if (wordswithnorules.size() > 0)
    341351                {
    342                         int predid = rndUint(wordswithnorules.size());
     352                        int predid = rndUint((unsigned int)wordswithnorules.size());
    343353                        fL_Rule *newrule = new fL_Rule(0, 0);
    344354                        fL_Word *pred = new fL_Word();
     
    352362                else if (creature->rules.size() > 0)
    353363                {
    354                         int ruleid = rndUint(creature->rules.size());
     364                        int ruleid = rndUint((unsigned int)creature->rules.size());
    355365                        fL_Rule *newrule = new fL_Rule(0, 0);
    356366                        fL_Word *pred = new fL_Word();
     
    455465                else
    456466                {
    457                         int rndid = rndUint(list->size());
     467                        int rndid = rndUint((unsigned int)list->size());
    458468                        std::list<fL_Word *>::iterator it = list->begin();
    459469                        std::advance(it, rndid);
     
    482492                int tmp = 0;
    483493                std::list<fL_Word *> *list = selectRandomSequence(creature, numpars, tmp);
    484                 int rndid = rndUint(list->size());
     494                int rndid = rndUint((unsigned int)list->size());
    485495                std::list<fL_Word *>::iterator it = list->begin();
    486496                std::advance(it, rndid);
     
    531541                int tmp = 0;
    532542                std::list<fL_Word *> *list = selectRandomSequence(creature, numpars, tmp);
    533                 int rndid = rndUint(list->size());
     543                int rndid = rndUint((unsigned int)list->size());
    534544                std::list<fL_Word *>::iterator selectedword = list->begin();
    535545                std::advance(selectedword, rndid);
     
    545555                        int numpars = 0;
    546556                        std::list<fL_Word *> *list = selectRandomSequence(creature, numpars, tmp);
    547                         int rndid = rndUint(list->size());
     557                        int rndid = rndUint((unsigned int)list->size());
    548558                        std::list<fL_Word *>::iterator it = list->begin();
    549559                        std::advance(it, rndid);
     
    577587                                if (available.size() > 0)
    578588                                {
    579                                         int newnameid = rndUint(available.size());
     589                                        int newnameid = rndUint((unsigned int)available.size());
    580590                                        (*selectedword)->name = available[newnameid]->name;
    581591                                }
     
    752762                for (int i = 0; i < numselrules; i++)
    753763                {
    754                         int rulid = rndUint(from->rules.size());
     764                        int rulid = rndUint((unsigned int)from->rules.size());
    755765                        fL_Rule *rul = from->rules[rulid];
    756766                        fL_Rule *newrule = new fL_Rule(0, 0);
     
    894904        else if (strchr("<>$[]&\\ @|*", ch) != NULL) // other allowed symbols and special neuron symbols
    895905        {
    896                 style = GENSTYLE_CS(GENCOLOR_TEXT, ch=='[' || ch==']' ? GENSTYLE_BOLD : GENSTYLE_NONE);
     906                style = GENSTYLE_CS(GENCOLOR_TEXT, ch == '[' || ch == ']' ? GENSTYLE_BOLD : GENSTYLE_NONE);
    897907        }
    898908        return style;
Note: See TracChangeset for help on using the changeset viewer.