- Timestamp:
- 04/18/23 01:59:59 (19 months ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
framspy/dissimilarity/density-distribution.py
r1223 r1224 6 6 7 7 class DensityDistribution: 8 """ Dissimilarity measures based on the distribution. The structure's bounding box is divided into equal-sized cuboids, the number of which depends on the 'steps' parameter. Then the structure's surface is covered with points, the density of the surface's sampling depends on the 'density' parameter. There are two versions of the measure. In the default version ('frequency'=False) a signature is computed as centroids and a number of samples in each cuboid. In the 'frequency' version FFT is computed from the vector containing the number of samples in each cuboid. The distance between signatures can be computed using EMD, L1, or L2 norms.8 """Two dissimilarity measures based on the spatial distribution of two Models. The Model bounding box is divided into a grid of equally-sized cuboids, the number of which is the 'resolution' parameter cubed. Then the Model surface is covered with points; the density of the surface sampling is determined by the 'density' parameter. There are two versions of the measure. In the default version ('frequency'=False), a signature of each cuboid is the centroid and the number of samples. In the 'frequency'=True version, FFT is computed from the vector containing the number of samples in each cuboid. The final result of the dissimilarity measure is the distance between the signatures and it can be computed using EMD, L1, or L2 norms (the 'metric' parameter). 9 9 """ 10 libm = cdll.LoadLibrary(find_library('m')) 10 11 libm = cdll.LoadLibrary(find_library('m')) # for disabling/enabling floating point exceptions (division by zero occurs in the EMD library) 11 12 EPSILON = 0.0001 12 def __init__(self, frams_module=None, density = 10, steps = 3, reduce=True, frequency=False, metric = 'emd', fixedZaxis=False, verbose=False): 13 14 def __init__(self, frams_module=None, density = 10, resolution = 3, reduce_empty=True, frequency=False, metric = 'emd', fixedZaxis=False, verbose=False): 13 15 """ __init__ 14 16 Args: 15 density (int, optional): density of samplings for frams.ModelGeometry 16 steps (int, optional): How many steps are used for sampling the space of voxels,17 The higher the value, the more accurate the samplingand the longer the calculations. Defaults to 3.18 reduce (bool, optional): If we should use reduction to remove blank samples. Defaults to True.17 density (int, optional): density of samplings for frams.ModelGeometry. Defaults to 10. 18 resolution (int, optional): How many intervals are used in each dimension to partition surface samples of Models in the 3D space. 19 The higher the value, the more detailed the comparison and the longer the calculations. Defaults to 3. 20 reduce_empty (bool, optional): If we should use reduction to remove blank samples. Defaults to True. 19 21 frequency (bool, optional): If we should use frequency distribution. Defaults to False. 20 22 metric (string, optional): The distance metric that should be used ('emd', 'l1', or 'l2'). Defaults to 'emd'. … … 27 29 28 30 self.density = density 29 self. steps = steps31 self.resolution = resolution 30 32 self.verbose = verbose 31 self.reduce = reduce33 self.reduce_empty = reduce_empty 32 34 self.frequency = frequency 33 35 self.metric = metric … … 76 78 """ 77 79 Args: 78 array1 ([type]): array of size n with points representing firsts model79 array2 ([type]): array of size n with points representing second model80 81 Returns: 82 np.array(np.array(,dtype=float)): distance matrix n xn80 array1 ([type]): array of size n with points representing the first Model 81 array2 ([type]): array of size n with points representing the second Model 82 83 Returns: 84 np.array(np.array(,dtype=float)): distance matrix n*n 83 85 """ 84 86 n = len(array1) … … 90 92 91 93 92 def reduce SignaturesFreq(self,s1,s2):94 def reduceEmptySignatures_Frequency(self,s1,s2): 93 95 """Removes samples from signatures if corresponding samples for both models have weight 0. 94 96 Args: … … 109 111 110 112 111 def reduce SignaturesDens(self,s1,s2):113 def reduceEmptySignatures_Density(self,s1,s2): 112 114 """Removes samples from signatures if corresponding samples for both models have weight 0. 113 115 Args: … … 130 132 131 133 132 def getSignatures(self,array, steps_all,step_all):133 """Generates signature for array representing model. Signature is composed of list of points [x,y,z] (float) and list of weights (int).134 135 Args: 136 array (np.array(np.array(,dtype=float))): array with voxels representing model137 steps_all([np.array(,dtype=float),np.array(,dtype=float),np.array(,dtype=float)]): lists with edges for each step for each axis in order x,y,z138 step _all ([float,float,float]): [size of step for x axis, size of step for y axis, size of stepfor y axis]134 def getSignatures(self,array,edges3,steps3): 135 """Generates signature for array representing the Model. Signature is composed of list of points [x,y,z] (float) and list of weights (int). 136 137 Args: 138 array (np.array(np.array(,dtype=float))): array with voxels representing the Model 139 edges3 ([np.array(,dtype=float),np.array(,dtype=float),np.array(,dtype=float)]): lists with edges for each step for each axis in order x,y,z 140 steps3 ([float,float,float]): [size of interval for x axis, size of interval for y axis, size of interval for y axis] 139 141 140 142 Returns (distribution): … … 143 145 signature np.array(,dtype=np.float64): returns signatuere np.array of coefficients 144 146 """ 145 x_steps,y_steps,z_steps = steps_all146 x_step,y_step,z_step=step_all147 edges_x,edges_y,edges_z = edges3 148 step_x,step_y,step_z=steps3 147 149 feature_array = [] 148 150 weight_array = [] 149 step_ half_x = x_step/2150 step_ half_y = y_step/2151 step_ half_z = z_step/2152 for x in range(len( x_steps[:-1])):153 for y in range(len( y_steps[:-1])) :154 for z in range(len( z_steps[:-1])):155 rows=np.where((array[:,0]> x_steps[x]) &156 (array[:,0]<= x_steps[x+1]) &157 (array[:,1]> y_steps[y]) &158 (array[:,1]<= y_steps[y+1]) &159 (array[:,2]> z_steps[z]) &160 (array[:,2]<= z_steps[z+1]))151 step_x_half = step_x/2 152 step_y_half = step_y/2 153 step_z_half = step_z/2 154 for x in range(len(edges_x[:-1])): 155 for y in range(len(edges_y[:-1])) : 156 for z in range(len(edges_z[:-1])): 157 rows=np.where((array[:,0]> edges_x[x]) & 158 (array[:,0]<= edges_x[x+1]) & 159 (array[:,1]> edges_y[y]) & 160 (array[:,1]<= edges_y[y+1]) & 161 (array[:,2]> edges_z[z]) & 162 (array[:,2]<= edges_z[z+1])) 161 163 if self.frequency: 162 164 feature_array.append(len(array[rows])) 163 165 else: 164 weight, point = self.calculateNeighberhood(array[rows],[ x_steps[x]+step_half_x,y_steps[y]+step_half_y,z_steps[z]+step_half_z])166 weight, point = self.calculateNeighberhood(array[rows],[edges_x[x]+step_x_half,edges_y[y]+step_y_half,edges_z[z]+step_z_half]) 165 167 feature_array.append(point) 166 168 weight_array.append(weight) … … 175 177 def getSignaturesForPair(self,array1,array2): 176 178 """Generates signatures for given pair of models represented by array of voxels. 177 We calculate space for given models by taking the extremas for each axis and dividing the space by the number of steps. 178 This divided space generate us samples which contains points. Each sample will have new coordinates which are mean of all points from it and weight 179 which equals to the number of points. 179 We calculate space for given models by taking the extremas for each axis and dividing the space by the resolution. 180 This divided space generate us samples which contains points. Each sample will have new coordinates which are mean of all points from it and weight which equals to the number of points. 180 181 181 182 Args: 182 183 array1 (np.array(np.array(,dtype=float))): array with voxels representing model1 183 184 array2 (np.array(np.array(,dtype=float))): array with voxels representing model2 184 steps (int, optional): How many steps is used for sampling space of voxels. Defaults to self.steps (3). 185 185 186 186 Returns: 187 187 s1 ([np.array(,dtype=np.float64),np.array(,dtype=np.float64)]): [coordinates of samples, weights] … … 196 196 max_z = np.max([np.max(array1[:,2]),np.max(array2[:,2])]) 197 197 198 # We request self. steps+1 samples since we need self.stepsintervals199 x_steps,x_step = np.linspace(min_x,max_x,self.steps+1,retstep=True)200 y_steps,y_step = np.linspace(min_y,max_y,self.steps+1,retstep=True)201 z_steps,z_step = np.linspace(min_z,max_z,self.steps+1,retstep=True)198 # We request self.resolution+1 samples since we need self.resolution intervals 199 edges_x,step_x = np.linspace(min_x,max_x,self.resolution+1,retstep=True) 200 edges_y,step_y = np.linspace(min_y,max_y,self.resolution+1,retstep=True) 201 edges_z,step_z = np.linspace(min_z,max_z,self.resolution+1,retstep=True) 202 202 203 for intervals in (x_steps, y_steps, z_steps): # EPSILON subtracted to deal with boundary voxels (one-sided open intervals and comparisons in loops in function getSignatures())204 intervals[0] -= self.EPSILON205 206 steps_all = (x_steps,y_steps,z_steps)207 step _all = (x_step,y_step,z_step)203 for edges in (edges_x, edges_y, edges_z): # EPSILON subtracted to deal with boundary voxels (one-sided open intervals and comparisons in loops in function getSignatures()) 204 edges[0] -= self.EPSILON 205 206 edges3 = (edges_x,edges_y,edges_z) 207 steps3 = (step_x,step_y,step_z) 208 208 209 s1 = self.getSignatures(array1, steps_all,step_all)210 s2 = self.getSignatures(array2, steps_all,step_all)209 s1 = self.getSignatures(array1,edges3,steps3) 210 s2 = self.getSignatures(array2,edges3,steps3) 211 211 212 212 return s1,s2 … … 217 217 218 218 Args: 219 geno (string): representation of model in one of the formats handled by framshttp://www.framsticks.com/a/al_genotype.html220 221 Returns: 222 np.array([np.array(,dtype=float)]: list of voxels representing model.219 geno (string): representation of Model in one of the formats supported by Framsticks, http://www.framsticks.com/a/al_genotype.html 220 221 Returns: 222 np.array([np.array(,dtype=float)]: list of voxels representing the Model. 223 223 """ 224 224 model = self.frams.Model.newFromString(geno) … … 236 236 voxels1 np.array([np.array(,dtype=float)]: list of voxels representing model1. 237 237 voxels2 np.array([np.array(,dtype=float)]: list of voxels representing model2. 238 steps (int, optional): How many steps is used for sampling space of voxels. Defaults to self.steps (3).239 238 240 239 Returns: … … 250 249 print("Base voxels fig1: ", numvox1, " fig2: ", numvox2) 251 250 print("After reduction voxels fig1: ", sum(s1[1]), " fig2: ", sum(s2[1])) 252 raise ValueError("Bad signature!")253 254 reduce_fun = self.reduce SignaturesFreq if self.frequency else self.reduceSignaturesDens255 if self.reduce :251 raise RuntimeError("Bad signature!") 252 253 reduce_fun = self.reduceEmptySignatures_Frequency if self.frequency else self.reduceEmptySignatures_Density 254 if self.reduce_empty: 256 255 s1, s2 = reduce_fun(s1,s2) 257 256 258 257 if not self.frequency: 259 258 if numvox1 != sum(s1[1]) or numvox2 != sum(s2[1]): 260 print("Voxel reduction didn t work properly")259 print("Voxel reduction didn't work properly") 261 260 print("Base voxels fig1: ", numvox1, " fig2: ", numvox2) 262 261 print("After reduction voxels fig1: ", sum(s1[1]), " fig2: ", sum(s2[1])) 262 raise RuntimeError("Voxel reduction error!") 263 263 264 264 if self.metric == 'l1': … … 281 281 dist_matrix = self.calculateDistanceMatrix(s1[0],s2[0]) 282 282 283 self.libm.fedisableexcept(0x04) # allowing for operation divide by 0 because pyemd requiers it.283 self.libm.fedisableexcept(0x04) # change default flag value - don't cause exceptions when dividing by 0 (pyemd does it) 284 284 285 285 if self.frequency: … … 288 288 out = emd(s1[1],s2[1],dist_matrix) 289 289 290 self.libm.feclearexcept(0x04) # disabling operation divide by 0 because framsticks doesnt like it.290 self.libm.feclearexcept(0x04) # restoring default flag values... 291 291 self.libm.feenableexcept(0x04) 292 292 … … 300 300 """Calculates EMD for a pair of genotypes. 301 301 Args: 302 geno1 (string): representation of model1 in one of the formats handled by frams http://www.framsticks.com/a/al_genotype.html 303 geno2 (string): representation of model2 in one of the formats handled by frams http://www.framsticks.com/a/al_genotype.html 304 steps (int, optional): How many steps is used for sampling space of voxels. Defaults to self.steps (3). 302 geno1 (string): representation of model1 in one of the formats supported by Framsticks, http://www.framsticks.com/a/al_genotype.html 303 geno2 (string): representation of model2 in one of the formats supported by Framsticks, http://www.framsticks.com/a/al_genotype.html 305 304 306 305 Returns: … … 314 313 315 314 if self.verbose == True: 316 print(" Steps: ", self.steps)315 print("Intervals: ", self.resolution) 317 316 print("Geno1:\n",geno1) 318 317 print("Geno2:\n",geno2) … … 325 324 """ 326 325 Args: 327 listOfGeno ([string]): list of strings representing genotypes in one of the formats handled by framshttp://www.framsticks.com/a/al_genotype.html326 listOfGeno ([string]): list of strings representing genotypes in one of the formats supported by Framsticks, http://www.framsticks.com/a/al_genotype.html 328 327 329 328 Returns:
Note: See TracChangeset
for help on using the changeset viewer.