Ignore:
Timestamp:
08/31/22 00:05:43 (2 years ago)
Author:
Maciej Komosinski
Message:

More concise code and less redundancy in dissimilarity classes, added support for archive of genotypes, added hard limit on the number of genotype chars

Location:
framspy/evolalg/dissimilarity
Files:
1 added
3 edited

Legend:

Unmodified
Added
Removed
  • framspy/evolalg/dissimilarity/dissimilarity.py

    r1145 r1182  
    1111
    1212        self.output_field = output_field
    13         self.fn_reduce = None
     13        self.fn_reduce = Dissimilarity.get_reduction_by_name(reduction)
    1414        self.knn = knn
    15         if reduction == "mean": # TODO change this 'elif' sequence to dictionary?
    16             self.fn_reduce = np.mean
    17         elif reduction == "max":
    18             self.fn_reduce = np.max
    19         elif reduction == "min":
    20             self.fn_reduce = np.min
    21         elif reduction == "sum":
    22             self.fn_reduce = np.sum
    23         elif reduction == "knn_mean":
    24             self.fn_reduce = self.knn_mean
    25         elif reduction == "none" or reduction is None:
    26             self.fn_reduce = None
     15
     16
     17    @staticmethod
     18    def reduce(dissim_matrix, fn_reduce, knn):
     19        if fn_reduce is None:
     20            return dissim_matrix
     21        elif fn_reduce is Dissimilarity.knn_mean:
     22            return fn_reduce(dissim_matrix, 1, knn)
    2723        else:
    28             raise ValueError("Unknown reduction type. Supported: mean, max, min, sum, knn_mean, none")
     24            return fn_reduce(dissim_matrix, axis=1)
    2925
    30     def reduce(self, dissim_matrix):
    31         if self.fn_reduce is None:
    32             return dissim_matrix
    33         return self.fn_reduce(dissim_matrix, axis=1)
    3426
    35     def knn_mean(self, dissim_matrix,axis):
    36         return np.mean(np.partition(dissim_matrix, self.knn)[:,:self.knn],axis=axis)
     27    @staticmethod
     28    def knn_mean(dissim_matrix, axis, knn):
     29        return np.mean(np.partition(dissim_matrix, knn)[:, :knn], axis=axis)
     30
     31
     32    @staticmethod
     33    def get_reduction_by_name(reduction: str):
     34
     35        if reduction not in REDUCTION_FUNCTION:
     36            raise ValueError(f"Unknown reduction type '{reduction}'. Supported: {','.join(REDUCTION_FUNCTION.keys())}")
     37
     38        return REDUCTION_FUNCTION[reduction]
     39
     40
     41
     42REDUCTION_FUNCTION = {
     43            "mean": np.mean,
     44            "max": np.max,
     45            "min": np.min,
     46            "sum": np.sum,
     47            "knn_mean": Dissimilarity.knn_mean,
     48            "none": None
     49        }
  • framspy/evolalg/dissimilarity/frams_dissimilarity.py

    r1145 r1182  
    66from evolalg.dissimilarity.dissimilarity import Dissimilarity
    77
    8 #TODO eliminate overlap with dissimilarity.py
    9 
    108
    119class FramsDissimilarity(FramsStep):
    1210
    13     def __init__(self, frams_lib, reduction="mean", output_field="dissim", knn=None, *args, **kwargs):
     11    def __init__(self, frams_lib, reduction="mean", output_field="dissim",knn=None, *args, **kwargs):
    1412        super(FramsDissimilarity, self).__init__(frams_lib, *args, **kwargs)
    1513
    1614        self.output_field = output_field
    17         self.fn_reduce = None
     15        self.fn_reduce = Dissimilarity.get_reduction_by_name(reduction)
    1816        self.knn = knn
    19         if reduction == "mean":
    20             self.fn_reduce = np.mean
    21         elif reduction == "max":
    22             self.fn_reduce = np.max
    23         elif reduction == "min":
    24             self.fn_reduce = np.min
    25         elif reduction == "sum":
    26             self.fn_reduce = np.sum
    27         elif reduction == "knn_mean":
    28             self.fn_reduce = self.knn_mean
    29         elif reduction == "none" or reduction is None:
    30             self.fn_reduce = None
    31         else:
    32             raise ValueError("Unknown reduction type. Supported: mean, max, min, sum, knn_mean, none")
    3317
    34     def reduce(self, dissim_matrix):
    35         if self.fn_reduce is None:
    36             return dissim_matrix
    37         return self.fn_reduce(dissim_matrix, axis=1)
    3818
    3919    def call(self, population):
     
    4121        if len(population) == 0:
    4222            return []
    43         dissim_matrix = self.frams.dissimilarity([_.genotype for _ in population])
    44         dissim = self.reduce(dissim_matrix)
     23        dissim_matrix = self.frams.dissimilarity([_.genotype for _ in population], 1)
     24        dissim = Dissimilarity.reduce(dissim_matrix, self.fn_reduce, self.knn)
    4525        for d,ind in zip(dissim, population):
    4626            setattr(ind, self.output_field, d)
    4727        return population
    48 
    49     def knn_mean(self, dissim_matrix,axis):
    50         return np.mean(np.partition(dissim_matrix, self.knn)[:,:self.knn],axis=axis)
  • framspy/evolalg/dissimilarity/levenshtein.py

    r1139 r1182  
    1818                gen_dis.append(lev.distance(p.genotype, p2.genotype))
    1919            dissim.append(gen_dis)
    20         dissim = self.reduce(dissim)
     20        dissim = self.reduce(dissim, self.fn_reduce, self.knn)
    2121        for d, ind in zip(dissim, population):
    2222            setattr(ind, self.output_field, d)
Note: See TracChangeset for help on using the changeset viewer.