source: mds-and-trees/tree-genealogy.py @ 947

Last change on this file since 947 was 713, checked in by Maciej Komosinski, 7 years ago

Made error message more specific

File size: 40.0 KB
RevLine 
[562]1import json
[624]2import math
[562]3import random
4import argparse
[624]5import bisect
[702]6import copy
[624]7import time as timelib
8from PIL import Image, ImageDraw, ImageFont
[633]9from scipy import stats
[695]10from matplotlib import colors
[633]11import numpy as np
[562]12
[624]13class LoadingError(Exception):
14    pass
[562]15
[624]16class Drawer:
[571]17
[624]18    def __init__(self, design, config_file, w=600, h=800, w_margin=10, h_margin=20):
19        self.design = design
20        self.width = w
21        self.height = h
22        self.w_margin = w_margin
23        self.h_margin = h_margin
24        self.w_no_margs = w - 2* w_margin
25        self.h_no_margs = h - 2* h_margin
[571]26
[695]27        self.color_converter = colors.ColorConverter()
[562]28
[624]29        self.settings = {
30            'colors_of_kinds': ['red', 'green', 'blue', 'magenta', 'yellow', 'cyan', 'orange', 'purple'],
31            'dots': {
32                'color': {
[628]33                    'meaning': 'Lifespan',
[700]34                    'normalize_cmap': False,
35                    'cmap': {},
[628]36                    'start': 'red',
[624]37                    'end': 'green',
38                    'bias': 1
39                    },
40                'size': {
[628]41                    'meaning': 'EnergyEaten',
[624]42                    'start': 1,
[628]43                    'end': 6,
[624]44                    'bias': 0.5
45                    },
46                'opacity': {
[628]47                    'meaning': 'EnergyEaten',
48                    'start': 0.2,
49                    'end': 1,
[624]50                    'bias': 1
51                    }
52            },
53            'lines': {
54                'color': {
55                    'meaning': 'adepth',
[700]56                    'normalize_cmap': False,
57                    'cmap': {},
[624]58                    'start': 'black',
59                    'end': 'red',
60                    'bias': 3
61                    },
62                'width': {
63                    'meaning': 'adepth',
[627]64                    'start': 0.1,
[624]65                    'end': 4,
66                    'bias': 3
67                    },
68                'opacity': {
69                    'meaning': 'adepth',
70                    'start': 0.1,
71                    'end': 0.8,
72                    'bias': 5
73                    }
74            }
75        }
[577]76
[624]77        def merge(source, destination):
78            for key, value in source.items():
79                if isinstance(value, dict):
80                    node = destination.setdefault(key, {})
81                    merge(value, node)
82                else:
83                    destination[key] = value
84            return destination
[576]85
[624]86        if config_file != "":
87            with open(config_file) as config:
88                c = json.load(config)
89            self.settings = merge(c, self.settings)
90            #print(json.dumps(self.settings, indent=4, sort_keys=True))
[586]91
[700]92        self.compile_cmaps()
93
94    def compile_cmaps(self):
[702]95        def normalize_and_compile_cmap(cmap):
96            for key in cmap:
97                for arr in cmap[key]:
98                    arr[0] = (arr[0] - cmap[key][0][0]) / (cmap[key][-1][0] - cmap[key][0][0])
99            return colors.LinearSegmentedColormap('Custom', cmap)
[700]100
101        for part in ['dots', 'lines']:
[702]102            if self.settings[part]['color']['cmap']:
103                if self.settings[part]['color']['normalize_cmap']:
104                    cmap = self.settings[part]['color']['cmap']
105                    min = self.design.props[self.settings[part]['color']['meaning'] + "_min"]
106                    max = self.design.props[self.settings[part]['color']['meaning'] + "_max"]
[700]107
[702]108                    for key in cmap:
109                        if cmap[key][0][0] > min:
110                            cmap[key].insert(0, cmap[key][0][:])
111                            cmap[key][0][0] = min
112                        if cmap[key][-1][0] < max:
113                            cmap[key].append(cmap[key][-1][:])
114                            cmap[key][-1][0] = max
[700]115
[702]116                    og_cmap = normalize_and_compile_cmap(copy.deepcopy(cmap))
[700]117
[702]118                    col2key = {'red':0, 'green':1, 'blue':2}
119                    for key in cmap:
120                        # for color from (r/g/b) #n's should be the same for all keys!
121                        n_min = (min - cmap[key][0][0]) / (cmap[key][-1][0] - cmap[key][0][0])
122                        n_max = (max - cmap[key][0][0]) / (cmap[key][-1][0] - cmap[key][0][0])
123
124                        min_col = og_cmap(n_min)
125                        max_col = og_cmap(n_max)
126
127                        cmap[key][0] = [min, min_col[col2key[key]], min_col[col2key[key]]]
128                        cmap[key][-1] = [max, max_col[col2key[key]], max_col[col2key[key]]]
129                print(self.settings[part]['color']['cmap'])
130                self.settings[part]['color']['cmap'] = normalize_and_compile_cmap(self.settings[part]['color']['cmap'])
131
[624]132    def draw_dots(self, file, min_width, max_width, max_height):
133        for i in range(len(self.design.positions)):
134            node = self.design.positions[i]
135            if 'x' not in node:
136                continue
137            dot_style = self.compute_dot_style(node=i)
138            self.add_dot(file, (self.w_margin+self.w_no_margs*(node['x']-min_width)/(max_width-min_width),
139                               self.h_margin+self.h_no_margs*node['y']/max_height), dot_style)
[585]140
[624]141    def draw_lines(self, file, min_width, max_width, max_height):
142        for parent in range(len(self.design.positions)):
143            par_pos = self.design.positions[parent]
144            if not 'x' in par_pos:
145                continue
146            for child in self.design.tree.children[parent]:
147                chi_pos = self.design.positions[child]
148                if 'x' not in chi_pos:
149                    continue
150                line_style = self.compute_line_style(parent, child)
151                self.add_line(file, (self.w_margin+self.w_no_margs*(par_pos['x']-min_width)/(max_width-min_width),
152                                  self.h_margin+self.h_no_margs*par_pos['y']/max_height),
153                                  (self.w_margin+self.w_no_margs*(chi_pos['x']-min_width)/(max_width-min_width),
154                                  self.h_margin+self.h_no_margs*chi_pos['y']/max_height), line_style)
[585]155
[710]156    def draw_scale(self, file, filenames):
157        self.add_text(file, "Generated from " + filenames[0].split("\\")[-1]
158                      + (" and " + str(len(filenames)-1) + " more" if len(filenames) > 1 else ""), (5, 5), "start")
[562]159
[624]160        start_text = ""
161        end_text = ""
162        if self.design.TIME == "BIRTHS":
163           start_text = "Birth #0"
164           end_text = "Birth #" + str(len(self.design.positions)-1)
165        if self.design.TIME == "REAL":
166           start_text = "Time " + str(min(self.design.tree.time))
167           end_text = "Time " + str(max(self.design.tree.time))
168        if self.design.TIME == "GENERATIONAL":
[633]169           start_text = "Depth " + str(self.design.props['adepth_min'])
170           end_text = "Depth " + str(self.design.props['adepth_max'])
[576]171
[626]172        self.add_dashed_line(file, (self.width*0.7, self.h_margin), (self.width, self.h_margin))
173        self.add_text(file, start_text, (self.width, self.h_margin), "end")
[624]174        self.add_dashed_line(file, (self.width*0.7, self.height-self.h_margin), (self.width, self.height-self.h_margin))
[626]175        self.add_text(file, end_text, (self.width, self.height-self.h_margin), "end")
[562]176
[624]177    def compute_property(self, part, prop, node):
178        start = self.settings[part][prop]['start']
179        end = self.settings[part][prop]['end']
180        value = (self.design.props[self.settings[part][prop]['meaning']][node]
181                 if self.settings[part][prop]['meaning'] in self.design.props else 0 )
182        bias = self.settings[part][prop]['bias']
183        if prop == "color":
[700]184            if not self.settings[part][prop]['cmap']:
185                return self.compute_color(start, end, value, bias)
186            else:
187                return self.compute_color_from_cmap(self.settings[part][prop]['cmap'], value, bias)
[624]188        else:
189            return self.compute_value(start, end, value, bias)
[562]190
[700]191    def compute_color_from_cmap(self, cmap, value, bias=1):
192        value = 1 - (1-value)**bias
193        rgba = cmap(value)
194        return (100*rgba[0], 100*rgba[1], 100*rgba[2])
195
196
[624]197    def compute_color(self, start, end, value, bias=1):
198        if isinstance(value, str):
199            value = int(value)
[695]200            r, g, b = self.color_converter.to_rgb(self.settings['colors_of_kinds'][value])
[624]201        else:
[695]202            start_color = self.color_converter.to_rgb(start)
203            end_color = self.color_converter.to_rgb(end)
[624]204            value = 1 - (1-value)**bias
[695]205            r = start_color[0]*(1-value)+end_color[0]*value
206            g = start_color[1]*(1-value)+end_color[1]*value
207            b = start_color[2]*(1-value)+end_color[2]*value
208        return (100*r, 100*g, 100*b)
[562]209
[624]210    def compute_value(self, start, end, value, bias=1):
211        value = 1 - (1-value)**bias
212        return start*(1-value) + end*value
[564]213
[624]214class PngDrawer(Drawer):
[626]215
216    def scale_up(self):
217        self.width *= self.multi
218        self.height *= self.multi
219        self.w_margin *= self.multi
220        self.h_margin *= self.multi
221        self.h_no_margs *= self.multi
222        self.w_no_margs *= self.multi
223
224    def scale_down(self):
225        self.width /= self.multi
226        self.height /= self.multi
227        self.w_margin /= self.multi
228        self.h_margin /= self.multi
229        self.h_no_margs /= self.multi
230        self.w_no_margs /= self.multi
231
232    def draw_design(self, filename, input_filename, multi=1, scale="SIMPLE"):
[624]233        print("Drawing...")
[564]234
[626]235        self.multi=multi
236        self.scale_up()
237
[624]238        back = Image.new('RGBA', (self.width, self.height), (255,255,255,0))
[562]239
[624]240        min_width = min([x['x'] for x in self.design.positions if 'x' in x])
241        max_width = max([x['x'] for x in self.design.positions if 'x' in x])
242        max_height = max([x['y'] for x in self.design.positions if 'y' in x])
[562]243
[624]244        self.draw_lines(back, min_width, max_width, max_height)
245        self.draw_dots(back, min_width, max_width, max_height)
[562]246
[624]247        if scale == "SIMPLE":
248            self.draw_scale(back, input_filename)
[564]249
[626]250        #back.show()
251        self.scale_down()
252
253        back.thumbnail((self.width, self.height), Image.ANTIALIAS)
254
[624]255        back.save(filename)
[562]256
[624]257    def add_dot(self, file, pos, style):
258        x, y = int(pos[0]), int(pos[1])
[626]259        r = style['r']*self.multi
[624]260        offset = (int(x - r), int(y - r))
261        size = (2*int(r), 2*int(r))
[622]262
[624]263        c = style['color']
[572]264
[624]265        img = Image.new('RGBA', size)
266        ImageDraw.Draw(img).ellipse((1, 1, size[0]-1, size[1]-1),
267                                    (int(2.55*c[0]), int(2.55*c[1]), int(2.55*c[2]), int(255*style['opacity'])))
268        file.paste(img, offset, mask=img)
[572]269
[624]270    def add_line(self, file, from_pos, to_pos, style):
271        fx, fy, tx, ty = int(from_pos[0]), int(from_pos[1]), int(to_pos[0]), int(to_pos[1])
[626]272        w = int(style['width'])*self.multi
[562]273
[624]274        offset = (min(fx-w, tx-w), min(fy-w, ty-w))
275        size = (abs(fx-tx)+2*w, abs(fy-ty)+2*w)
[700]276        if size[0] == 0 or size[1] == 0:
277            return
[577]278
[624]279        c = style['color']
[622]280
[624]281        img = Image.new('RGBA', size)
282        ImageDraw.Draw(img).line((w, w, size[0]-w, size[1]-w) if (fx-tx)*(fy-ty)>0 else (size[0]-w, w, w, size[1]-w),
[626]283                                  (int(2.55*c[0]), int(2.55*c[1]), int(2.55*c[2]), int(255*style['opacity'])), w)
[624]284        file.paste(img, offset, mask=img)
[562]285
[624]286    def add_dashed_line(self, file, from_pos, to_pos):
287        style = {'color': (0,0,0), 'width': 1, 'opacity': 1}
288        sublines = 50
289        # TODO could be faster: compute delta and only add delta each time (but currently we do not use it often)
[684]290        normdiv = 2*sublines-1
[624]291        for i in range(sublines):
[684]292            from_pos_sub = (self.compute_value(from_pos[0], to_pos[0], 2*i/normdiv, 1),
293                            self.compute_value(from_pos[1], to_pos[1], 2*i/normdiv, 1))
294            to_pos_sub = (self.compute_value(from_pos[0], to_pos[0], (2*i+1)/normdiv, 1),
295                          self.compute_value(from_pos[1], to_pos[1], (2*i+1)/normdiv, 1))
[624]296            self.add_line(file, from_pos_sub, to_pos_sub, style)
[562]297
[624]298    def add_text(self, file, text, pos, anchor, style=''):
[626]299        font = ImageFont.truetype("Vera.ttf", 16*self.multi)
[621]300
[624]301        img = Image.new('RGBA', (self.width, self.height))
302        draw = ImageDraw.Draw(img)
303        txtsize = draw.textsize(text, font=font)
[626]304        pos = pos if anchor == "start" else (pos[0]-txtsize[0], pos[1])
[624]305        draw.text(pos, text, (0,0,0), font=font)
306        file.paste(img, (0,0), mask=img)
[622]307
[624]308    def compute_line_style(self, parent, child):
309        return {'color': self.compute_property('lines', 'color', child),
310                'width': self.compute_property('lines', 'width', child),
311                'opacity': self.compute_property('lines', 'opacity', child)}
312
313    def compute_dot_style(self, node):
314        return {'color': self.compute_property('dots', 'color', node),
315                'r': self.compute_property('dots', 'size', node),
316                'opacity': self.compute_property('dots', 'opacity', node)}
317
318class SvgDrawer(Drawer):
[626]319    def draw_design(self, filename, input_filename, multi=1, scale="SIMPLE"):
[624]320        print("Drawing...")
321        file = open(filename, "w")
322
323        min_width = min([x['x'] for x in self.design.positions if 'x' in x])
324        max_width = max([x['x'] for x in self.design.positions if 'x' in x])
325        max_height = max([x['y'] for x in self.design.positions if 'y' in x])
326
327        file.write('<svg xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" '
328                   'xmlns:xlink="http://www.w3.org/1999/xlink" version="1.0" '
329                   'width="' + str(self.width) + '" height="' + str(self.height) + '">')
330
331        self.draw_lines(file, min_width, max_width, max_height)
332        self.draw_dots(file, min_width, max_width, max_height)
333
334        if scale == "SIMPLE":
335            self.draw_scale(file, input_filename)
336
337        file.write("</svg>")
338        file.close()
339
340    def add_text(self, file, text, pos, anchor, style=''):
341        style = (style if style != '' else 'style="font-family: Arial; font-size: 12; fill: #000000;"')
[628]342        # assuming font size 12, it should be taken from the style string!
343        file.write('<text ' + style + ' text-anchor="' + anchor + '" x="' + str(pos[0]) + '" y="' + str(pos[1]+12) + '" >' + text + '</text>')
[624]344
345    def add_dot(self, file, pos, style):
346        file.write('<circle ' + style + ' cx="' + str(pos[0]) + '" cy="' + str(pos[1]) + '" />')
347
348    def add_line(self, file, from_pos, to_pos, style):
349        file.write('<line ' + style + ' x1="' + str(from_pos[0]) + '" x2="' + str(to_pos[0]) +
350                       '" y1="' + str(from_pos[1]) + '" y2="' + str(to_pos[1]) + '"  fill="none"/>')
351
352    def add_dashed_line(self, file, from_pos, to_pos):
353        style = 'stroke="black" stroke-width="0.5" stroke-opacity="1" stroke-dasharray="5, 5"'
354        self.add_line(file, from_pos, to_pos, style)
355
356    def compute_line_style(self, parent, child):
357        return self.compute_stroke_color('lines', child) + ' ' \
358               + self.compute_stroke_width('lines', child) + ' ' \
359               + self.compute_stroke_opacity(child)
360
361    def compute_dot_style(self, node):
362        return self.compute_dot_size(node) + ' ' \
363               + self.compute_fill_opacity(node) + ' ' \
364               + self.compute_dot_fill(node)
365
366    def compute_stroke_color(self, part, node):
367        color = self.compute_property(part, 'color', node)
368        return 'stroke="rgb(' + str(color[0]) + '%,' + str(color[1]) + '%,' + str(color[2]) + '%)"'
369
370    def compute_stroke_width(self, part, node):
371        return 'stroke-width="' + str(self.compute_property(part, 'width', node)) + '"'
372
373    def compute_stroke_opacity(self, node):
374        return 'stroke-opacity="' + str(self.compute_property('lines', 'opacity', node)) + '"'
375
376    def compute_fill_opacity(self, node):
377        return 'fill-opacity="' + str(self.compute_property('dots', 'opacity', node)) + '"'
378
379    def compute_dot_size(self, node):
380        return 'r="' + str(self.compute_property('dots', 'size', node)) + '"'
381
382    def compute_dot_fill(self, node):
383        color = self.compute_property('dots', 'color', node)
384        return 'fill="rgb(' + str(color[0]) + '%,' + str(color[1]) + '%,' + str(color[2]) + '%)"'
385
386class Designer:
387
388    def __init__(self, tree, jitter=False, time="GENERATIONAL", balance="DENSITY"):
389        self.props = {}
390
391        self.tree = tree
392
393        self.TIME = time
394        self.JITTER = jitter
395
396        if balance == "RANDOM":
397            self.xmin_crowd = self.xmin_crowd_random
398        elif balance == "MIN":
399            self.xmin_crowd = self.xmin_crowd_min
400        elif balance == "DENSITY":
401            self.xmin_crowd = self.xmin_crowd_density
[562]402        else:
[624]403            raise ValueError("Error, the value of BALANCE does not match any expected value.")
[562]404
[624]405    def calculate_measures(self):
406        print("Calculating measures...")
[679]407        self.compute_depth()
[701]408        self.compute_maxdepth()
[624]409        self.compute_adepth()
410        self.compute_children()
411        self.compute_kind()
412        self.compute_time()
[633]413        self.compute_progress()
[624]414        self.compute_custom()
[622]415
[624]416    def xmin_crowd_random(self, x1, x2, y):
417        return (x1 if random.randrange(2) == 0 else x2)
[562]418
[624]419    def xmin_crowd_min(self, x1, x2, y):
420        x1_closest = 999999
421        x2_closest = 999999
422        miny = y-3
423        maxy = y+3
424        i = bisect.bisect_left(self.y_sorted, miny)
425        while True:
426            if len(self.positions_sorted) <= i or self.positions_sorted[i]['y'] > maxy:
427                break
428            pos = self.positions_sorted[i]
[562]429
[624]430            x1_closest = min(x1_closest, abs(x1-pos['x']))
431            x2_closest = min(x2_closest, abs(x2-pos['x']))
[562]432
[624]433            i += 1
434        return (x1 if x1_closest > x2_closest else x2)
[562]435
[624]436    def xmin_crowd_density(self, x1, x2, y):
[690]437        # TODO experimental - requires further work to make it less 'jumpy' and more predictable
[694]438        CONST_LOCAL_AREA_RADIUS = 5
439        CONST_GLOBAL_AREA_RADIUS = 10
440        CONST_WINDOW_SIZE = 20000 #TODO should depend on the maxY ?
[690]441        x1_dist_loc = 0
442        x2_dist_loc = 0
443        count_loc = 1
444        x1_dist_glob = 0
445        x2_dist_glob = 0
446        count_glob = 1
[694]447        miny = y-CONST_WINDOW_SIZE
448        maxy = y+CONST_WINDOW_SIZE
[624]449        i_left = bisect.bisect_left(self.y_sorted, miny)
450        i_right = bisect.bisect_right(self.y_sorted, maxy)
[694]451        #TODO test: maxy=y should give the same results, right?
[562]452
[624]453        def include_pos(pos):
[690]454            nonlocal x1_dist_loc, x2_dist_loc, x1_dist_glob, x2_dist_glob, count_loc, count_glob
[562]455
[694]456            dysq = (pos['y']-y)**2 + 1 #+1 so 1/dysq is at most 1
457            dx1 = math.fabs(pos['x']-x1)
458            dx2 = math.fabs(pos['x']-x2)
459
[690]460            d = math.fabs(pos['x'] - (x1+x2)/2)
[623]461
[694]462            if d < CONST_LOCAL_AREA_RADIUS:
463                x1_dist_loc += math.sqrt(dx1/dysq + dx1**2)
464                x2_dist_loc += math.sqrt(dx2/dysq + dx2**2)
[690]465                count_loc += 1
[694]466            elif d > CONST_GLOBAL_AREA_RADIUS:
467                x1_dist_glob += math.sqrt(dx1/dysq + dx1**2)
468                x2_dist_glob += math.sqrt(dx2/dysq + dx2**2)
[690]469                count_glob += 1
470
[624]471        # optimized to draw from all the nodes, if less than 10 nodes in the range
472        if len(self.positions_sorted) > i_left:
473            if i_right - i_left < 10:
474                for j in range(i_left, i_right):
475                    include_pos(self.positions_sorted[j])
476            else:
477                for j in range(10):
478                    pos = self.positions_sorted[random.randrange(i_left, i_right)]
479                    include_pos(pos)
[562]480
[690]481        return (x1 if (x1_dist_loc-x2_dist_loc)/count_loc-(x1_dist_glob-x2_dist_glob)/count_glob > 0  else x2)
482        #return (x1 if x1_dist +random.gauss(0, 0.00001) > x2_dist +random.gauss(0, 0.00001)  else x2)
[624]483        #print(x1_dist, x2_dist)
484        #x1_dist = x1_dist**2
485        #x2_dist = x2_dist**2
486        #return x1 if x1_dist+x2_dist==0 else (x1*x1_dist + x2*x2_dist) / (x1_dist+x2_dist) + random.gauss(0, 0.01)
487        #return (x1 if random.randint(0, int(x1_dist+x2_dist)) < x1_dist else x2)
[571]488
[624]489    def calculate_node_positions(self, ignore_last=0):
490        print("Calculating positions...")
[562]491
[624]492        def add_node(node):
493            index = bisect.bisect_left(self.y_sorted, node['y'])
494            self.y_sorted.insert(index, node['y'])
495            self.positions_sorted.insert(index, node)
496            self.positions[node['id']] = node
[572]497
[624]498        self.positions_sorted = [{'x':0, 'y':0, 'id':0}]
499        self.y_sorted = [0]
500        self.positions = [{} for x in range(len(self.tree.parents))]
501        self.positions[0] = {'x':0, 'y':0, 'id':0}
[572]502
[677]503        # order by maximum depth of the parent guarantees that co child is evaluated before its parent
504        visiting_order = [i for i in range(0, len(self.tree.parents))]
[701]505        visiting_order = sorted(visiting_order, key=lambda q:\
506                            0 if q == 0 else self.props["maxdepth"][q])
[562]507
[624]508        start_time = timelib.time()
[566]509
[677]510        # for each child of the current node
[686]511        for node_counter,child in enumerate(visiting_order, start=1):
[677]512            # debug info - elapsed time
[685]513            if node_counter % 100000 == 0:
514               print("%d%%\t%d\t%g" % (node_counter*100/len(self.tree.parents), node_counter, timelib.time()-start_time))
[677]515               start_time = timelib.time()
[562]516
[677]517            # using normalized adepth
518            if self.props['adepth'][child] >= ignore_last/self.props['adepth_max']:
[621]519
[677]520                ypos = 0
521                if self.TIME == "BIRTHS":
522                    ypos = child
523                elif self.TIME == "GENERATIONAL":
524                    # one more than its parent (what if more than one parent?)
[680]525                    ypos = max([self.positions[par]['y'] for par, v in self.tree.parents[child].items()])+1 \
526                        if self.tree.parents[child] else 0
[677]527                elif self.TIME == "REAL":
528                    ypos = self.tree.time[child]
[621]529
[677]530                if len(self.tree.parents[child]) == 1:
531                # if current_node is the only parent
[687]532                    parent, similarity = [(par, v) for par, v in self.tree.parents[child].items()][0]
[621]533
[677]534                    if self.JITTER:
[690]535                        dissimilarity = (1-similarity) + random.gauss(0, 0.01) + 0.001
[621]536                    else:
[687]537                        dissimilarity = (1-similarity) + 0.001
[677]538                    add_node({'id':child, 'y':ypos, 'x':
539                             self.xmin_crowd(self.positions[parent]['x']-dissimilarity,
540                              self.positions[parent]['x']+dissimilarity, ypos)})
541                else:
542                    # position weighted by the degree of inheritence from each parent
543                    total_inheretance = sum([v for k, v in self.tree.parents[child].items()])
544                    xpos = sum([self.positions[k]['x']*v/total_inheretance
545                               for k, v in self.tree.parents[child].items()])
546                    if self.JITTER:
547                        add_node({'id':child, 'y':ypos, 'x':xpos + random.gauss(0, 0.1)})
548                    else:
549                        add_node({'id':child, 'y':ypos, 'x':xpos})
[621]550
551
[624]552    def compute_custom(self):
553        for prop in self.tree.props:
554            self.props[prop] = [None for x in range(len(self.tree.children))]
[621]555
[624]556            for i in range(len(self.props[prop])):
557                self.props[prop][i] = self.tree.props[prop][i]
[621]558
[624]559            self.normalize_prop(prop)
[562]560
[624]561    def compute_time(self):
562        # simple rewrite from the tree
563        self.props["time"] = [0 for x in range(len(self.tree.children))]
[562]564
[624]565        for i in range(len(self.props['time'])):
566            self.props['time'][i] = self.tree.time[i]
[572]567
[624]568        self.normalize_prop('time')
[617]569
[624]570    def compute_kind(self):
571        # simple rewrite from the tree
572        self.props["kind"] = [0 for x in range(len(self.tree.children))]
[617]573
[624]574        for i in range (len(self.props['kind'])):
575            self.props['kind'][i] = str(self.tree.kind[i])
[617]576
[624]577    def compute_depth(self):
578        self.props["depth"] = [999999999 for x in range(len(self.tree.children))]
[681]579        visited = [0 for x in range(len(self.tree.children))]
[617]580
[624]581        nodes_to_visit = [0]
[681]582        visited[0] = 1
[624]583        self.props["depth"][0] = 0
584        while True:
[681]585            current_node = nodes_to_visit[0]
[682]586
[681]587            for child in self.tree.children[current_node]:
588                if visited[child] == 0:
589                    visited[child] = 1
590                    nodes_to_visit.append(child)
591                    self.props["depth"][child] = self.props["depth"][current_node]+1
[624]592            nodes_to_visit = nodes_to_visit[1:]
593            if len(nodes_to_visit) == 0:
594                break
[617]595
[624]596        self.normalize_prop('depth')
[617]597
[701]598    def compute_maxdepth(self):
599        self.props["maxdepth"] = [999999999 for x in range(len(self.tree.children))]
600        visited = [0 for x in range(len(self.tree.children))]
601
602        nodes_to_visit = [0]
603        visited[0] = 1
604        self.props["maxdepth"][0] = 0
605        while True:
606            current_node = nodes_to_visit[0]
607
608            for child in self.tree.children[current_node]:
609                if visited[child] == 0:
610                    visited[child] = 1
611                    nodes_to_visit.append(child)
612                    self.props["maxdepth"][child] = self.props["maxdepth"][current_node]+1
613                elif self.props["maxdepth"][child] < self.props["maxdepth"][current_node]+1:
614                    self.props["maxdepth"][child] = self.props["maxdepth"][current_node]+1
615                    if child not in  nodes_to_visit:
616                        nodes_to_visit.append(child)
617
618            nodes_to_visit = nodes_to_visit[1:]
619            if len(nodes_to_visit) == 0:
620                break
621
622        self.normalize_prop('maxdepth')
623
[624]624    def compute_adepth(self):
625        self.props["adepth"] = [0 for x in range(len(self.tree.children))]
[617]626
[679]627        # order by maximum depth of the parent guarantees that co child is evaluated before its parent
628        visiting_order = [i for i in range(0, len(self.tree.parents))]
[701]629        visiting_order = sorted(visiting_order, key=lambda q: self.props["maxdepth"][q])[::-1]
[617]630
[679]631        for node in visiting_order:
632            children = self.tree.children[node]
633            if len(children) != 0:
634                # 0 by default
635                self.props["adepth"][node] = max([self.props["adepth"][child] for child in children])+1
[624]636        self.normalize_prop('adepth')
[594]637
[624]638    def compute_children(self):
639        self.props["children"] = [0 for x in range(len(self.tree.children))]
640        for i in range (len(self.props['children'])):
641            self.props['children'][i] = len(self.tree.children[i])
[562]642
[624]643        self.normalize_prop('children')
[564]644
[633]645    def compute_progress(self):
646        self.props["progress"] = [0 for x in range(len(self.tree.children))]
647        for i in range(len(self.props['children'])):
648            times = sorted([self.props["time"][self.tree.children[i][j]]*100000 for j in range(len(self.tree.children[i]))])
649            if len(times) > 4:
650                times = [times[i+1] - times[i] for i in range(len(times)-1)]
651                #print(times)
652                slope, intercept, r_value, p_value, std_err = stats.linregress(range(len(times)), times)
653                self.props['progress'][i] = slope if not np.isnan(slope) and not np.isinf(slope) else 0
654
655        for i in range(0, 5):
656            self.props['progress'][self.props['progress'].index(min(self.props['progress']))] = 0
657            self.props['progress'][self.props['progress'].index(max(self.props['progress']))] = 0
658
659        mini = min(self.props['progress'])
660        maxi = max(self.props['progress'])
661        for k in range(len(self.props['progress'])):
662            if self.props['progress'][k] == 0:
663                self.props['progress'][k] = mini
664
665        #for k in range(len(self.props['progress'])):
666        #        self.props['progress'][k] = 1-self.props['progress'][k]
667
668        self.normalize_prop('progress')
669
[624]670    def normalize_prop(self, prop):
[678]671        noneless = [v for v in self.props[prop] if (type(v)!=str and type(v)!=list)]
[624]672        if len(noneless) > 0:
673            max_val = max(noneless)
674            min_val = min(noneless)
[697]675            print("%s: [%g, %g]" % (prop, min_val, max_val))
[624]676            self.props[prop +'_max'] = max_val
677            self.props[prop +'_min'] = min_val
678            for i in range(len(self.props[prop])):
679                if self.props[prop][i] is not None:
[633]680                    qqq = self.props[prop][i]
681                    self.props[prop][i] = 0 if max_val == min_val else (self.props[prop][i] - min_val) / (max_val - min_val)
[594]682
[624]683class TreeData:
684    simple_data = None
[615]685
[624]686    children = []
687    parents = []
688    time = []
689    kind = []
[562]690
[624]691    def __init__(self): #, simple_data=False):
692        #self.simple_data = simple_data
693        pass
[562]694
[710]695    def load(self, filenames, max_nodes=0):
[624]696        print("Loading...")
[576]697
[624]698        CLI_PREFIX = "Script.Message:"
699        default_props = ["Time", "FromIDs", "ID", "Operation", "Inherited"]
[576]700
[708]701        merged_with_virtual_parent = [] #this list will contain individuals for which the parent could not be found
[707]702
[633]703        self.ids = {}
[628]704        def get_id(id, createOnError = True):
705            if createOnError:
[633]706                if id not in self.ids:
707                    self.ids[id] = len(self.ids)
[628]708            else:
[633]709                if id not in self.ids:
[628]710                    return None
[701]711
[633]712            return self.ids[id]
[576]713
[709]714        def try_to_load(input):
715            creature = False
716            try:
717                creature = json.loads(input)
718            except ValueError:
[712]719                print("Json format error: the line cannot be read. Breaking the loading loop.")
[709]720                # fixing arrays by removing the last element
721                # ! assuming that only the last line is broken !
722                self.parents.pop()
723                self.children.pop()
724                self.time.pop()
725                self.kind.pop()
726                self.life_lenght.pop()
727            return creature
728
[711]729        def load_creature_props(creature):
730            creature_id = get_id(creature["ID"])
731            for prop in creature:
732                if prop not in default_props:
733                    if prop not in self.props:
734                        self.props[prop] = [0 for i in range(nodes)]
735                    self.props[prop][creature_id] = creature[prop]
[576]736
[711]737        def load_born_props(creature):
738            nonlocal max_time
739            creature_id = get_id(creature["ID"])
740            if "Time" in creature:
741                self.time[creature_id] = creature["Time"] + time_offset
742                max_time = max(self.time[creature_id], max_time)
743
744        def load_offspring_props(creature):
745            creature_id = get_id(creature["ID"])#, False)
746            if "FromIDs" in creature:
747                # make sure that ID's of parents are lower than that of their children
748                for i in range(0, len(creature["FromIDs"])):
749                    if creature["FromIDs"][i] not in self.ids:
750                        get_id("virtual_parent")
751
752
753                # we assign to each parent its contribution to the genotype of the child
754                for i in range(0, len(creature["FromIDs"])):
755                    if creature["FromIDs"][i] in self.ids:
756                        parent_id = get_id(creature["FromIDs"][i])
757                    else:
758                        if creature["FromIDs"][i] not in merged_with_virtual_parent:
759                            merged_with_virtual_parent.append(creature["FromIDs"][i])
760                        parent_id = get_id("virtual_parent")
761                    inherited = (creature["Inherited"][i] if 'Inherited' in creature else 1)
762                    self.parents[creature_id][parent_id] = inherited
763
764                if "Kind" in creature:
765                    self.kind[creature_id] = creature["Kind"]
766            else:
767                raise LoadingError("[OFFSPRING] misses the 'FromIDs' field!")
768
[624]769        # counting the number of expected nodes
[711]770        nodes_born, nodes_offspring = 0, 0
[710]771        for filename in filenames:
772            file = open(filename)
773            for line in file:
774                line_arr = line.split(' ', 1)
775                if len(line_arr) == 2:
776                    if line_arr[0] == CLI_PREFIX:
777                        line_arr = line_arr[1].split(' ', 1)
778                    if line_arr[0] == "[BORN]":
[711]779                        nodes_born += 1
780                    if line_arr[0] == "[OFFSPRING]":
781                        nodes_offspring += 1
[712]782        # assuming that either BORN or OFFSPRING, or both, are present for each individual
[711]783        nodes = max(nodes_born, nodes_offspring)
784        nodes = min(nodes, max_nodes if max_nodes != 0 else nodes)+1
[562]785
[624]786        self.parents = [{} for x in range(nodes)]
787        self.children = [[] for x in range(nodes)]
788        self.time = [0] * nodes
789        self.kind = [0] * nodes
[628]790        self.life_lenght = [0] * nodes
[624]791        self.props = {}
[562]792
[688]793        print("nodes: %d" % len(self.parents))
[562]794
[709]795
796        get_id("virtual_parent")
[710]797        loaded_so_far = 0
798        max_time = 0
799        # rewind the file
[709]800
[710]801        for filename in filenames:
802            file = open(filename)
803            time_offset = max_time
804            if max_time != 0:
[712]805                print("NOTE: merging files, assuming cumulative time offset for '%s' to be %d" % (filename, time_offset))
[709]806
[710]807            lasttime = timelib.time()
[709]808
[710]809            for line in file:
810                line_arr = line.split(' ', 1)
811                if len(line_arr) == 2:
812                    if line_arr[0] == CLI_PREFIX:
813                        line_arr = line_arr[1].split(' ', 1)
814                    if line_arr[0] == "[BORN]":
815                        creature = try_to_load(line_arr[1])
816                        if not creature:
817                            nodes -= 1
818                            break
[709]819
[711]820                        if get_id(creature["ID"], False) is None:
821                            loaded_so_far += 1
[709]822
[711]823                        load_born_props(creature)
824                        load_creature_props(creature)
[709]825
[710]826                    if line_arr[0] == "[OFFSPRING]":
827                        creature = try_to_load(line_arr[1])
828                        if not creature:
829                            nodes -= 1
830                            break
831
[711]832                        if get_id(creature["ID"], False) is None:
833                            loaded_so_far += 1
834                            # load time only if there was no [BORN] yet
835                            load_born_props(creature)
[710]836
[711]837                        load_offspring_props(creature)
[710]838
[711]839                    if line_arr[0] == "[DIED]":
[710]840                        creature = try_to_load(line_arr[1])
841                        if not creature:
842                            nodes -= 1
843                            break
[711]844                        if get_id(creature["ID"], False) is not None:
845                            load_creature_props(creature)
846                        else:
[713]847                            print("NOTE: encountered [DIED] entry for individual '%s' before it was [BORN] or [OFFSPRING]" % creature["ID"])
[710]848
[711]849                # debug
850                if loaded_so_far%1000 == 0:
851                    #print(". " + str(creature_id) + " " + str(timelib.time() - lasttime))
852                    lasttime = timelib.time()
853
[710]854                # breaking both loops
855                if loaded_so_far >= max_nodes and max_nodes != 0:
856                    break
[624]857            if loaded_so_far >= max_nodes and max_nodes != 0:
858                break
859
[708]860        print("NOTE: all individuals with parent not provided or missing were connected to a single 'virtual parent' node: " + str(merged_with_virtual_parent))
[707]861
[709]862        for c_id in range(1, nodes):
863            if not self.parents[c_id]:
864                self.parents[c_id][get_id("virtual_parent")] = 1
865
[624]866        for k in range(len(self.parents)):
867            v = self.parents[k]
868            for val in self.parents[k]:
869                self.children[val].append(k)
870
[562]871depth = {}
[577]872kind = {}
[562]873
874def main():
875
[624]876    parser = argparse.ArgumentParser(description='Draws a genealogical tree (generates a SVG file) based on parent-child relationship '
877                                                 'information from a text file. Supports files generated by Framsticks experiments.')
[710]878    parser.add_argument('-i', '--in', nargs='+', dest='input', required=True, help='input file name with stuctured evolutionary data (or a list of input files)')
[624]879    parser.add_argument('-o', '--out', dest='output', required=True, help='output file name for the evolutionary tree (SVG/PNG/JPG/BMP)')
880    parser.add_argument('-c', '--config', dest='config', default="", help='config file name ')
[562]881
[624]882    parser.add_argument('-W', '--width', default=600, type=int, dest='width', help='width of the output image (600 by default)')
[626]883    parser.add_argument('-H', '--height', default=800, type=int, dest='height', help='height of the output image (800 by default)')
884    parser.add_argument('-m', '--multi', default=1, type=int, dest='multi', help='multisampling factor (applicable only for raster images)')
[562]885
[620]886    parser.add_argument('-t', '--time', default='GENERATIONAL', dest='time', help='values on vertical axis (BIRTHS/GENERATIONAL(d)/REAL); '
[614]887                                                                      'BIRTHS: time measured as the number of births since the beginning; '
[571]888                                                                      'GENERATIONAL: time measured as number of ancestors; '
889                                                                      'REAL: real time of the simulation')
[620]890    parser.add_argument('-b', '--balance', default='DENSITY', dest='balance', help='method of placing nodes in the tree (RANDOM/MIN/DENSITY(d))')
[624]891    parser.add_argument('-s', '--scale', default='SIMPLE', dest='scale', help='type of timescale added to the tree (NONE(d)/SIMPLE)')
[571]892    parser.add_argument('-j', '--jitter', dest="jitter", action='store_true', help='draw horizontal positions of children from the normal distribution')
[624]893    parser.add_argument('-p', '--skip', dest="skip", type=int, default=0, help='skip last P levels of the tree (0 by default)')
894    parser.add_argument('-x', '--max-nodes', type=int, default=0, dest='max_nodes', help='maximum number of nodes drawn (starting from the first one)')
[562]895    parser.add_argument('--seed', type=int, dest='seed', help='seed for the random number generator (-1 for random)')
896
897    parser.set_defaults(draw_tree=True)
898    parser.set_defaults(draw_skeleton=False)
899    parser.set_defaults(draw_spine=False)
900
901    parser.set_defaults(seed=-1)
902
903    args = parser.parse_args()
904
[620]905    TIME = args.time.upper()
906    BALANCE = args.balance.upper()
907    SCALE = args.scale.upper()
[571]908    JITTER = args.jitter
[620]909    if not TIME in ['BIRTHS', 'GENERATIONAL', 'REAL']\
910        or not BALANCE in ['RANDOM', 'MIN', 'DENSITY']\
911        or not SCALE in ['NONE', 'SIMPLE']:
[683]912        print("Incorrect value of one of the parameters! (time or balance or scale).") #user has to figure out which parameter is wrong...
[620]913        return
[562]914
915    dir = args.input
[710]916
[562]917    seed = args.seed
918    if seed == -1:
919        seed = random.randint(0, 10000)
920    random.seed(seed)
[689]921    print("randomseed:", seed)
[562]922
[624]923    tree = TreeData()
924    tree.load(dir, max_nodes=args.max_nodes)
[562]925
[682]926
[624]927    designer = Designer(tree, jitter=JITTER, time=TIME, balance=BALANCE)
928    designer.calculate_measures()
929    designer.calculate_node_positions(ignore_last=args.skip)
[562]930
[624]931    if args.output.endswith(".svg"):
932        drawer = SvgDrawer(designer, args.config, w=args.width, h=args.height)
933    else:
934        drawer = PngDrawer(designer, args.config, w=args.width, h=args.height)
[626]935    drawer.draw_design(args.output, args.input, multi=args.multi, scale=SCALE)
[562]936
937
938main()
Note: See TracBrowser for help on using the repository browser.