1 | /* |
---|
2 | Copyright 2009 by Marcin Szubert |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | */ |
---|
5 | |
---|
6 | package cecj.eval; |
---|
7 | |
---|
8 | import cecj.interaction.InteractionResult; |
---|
9 | import cecj.problems.SymmetricCompetitionProblem; |
---|
10 | import ec.EvolutionState; |
---|
11 | import ec.Individual; |
---|
12 | import ec.simple.SimpleFitness; |
---|
13 | import ec.util.Parameter; |
---|
14 | |
---|
15 | /** |
---|
16 | * Single elimination tournament competitive evaluator. It is different from the other |
---|
17 | * coevolutionary evaluators because interactions between individuals must be simulated in strict |
---|
18 | * order. It depends on the outcome of previous interaction if the individual can compete further. |
---|
19 | * |
---|
20 | * Assumes that individuals use <code>SimpleFitness</code>. The fitness assigned by this method is |
---|
21 | * equal to the height of the tournament subtree that particular individual has traversed - the |
---|
22 | * number of games won. To reduce the inherent noise of the tournament evaluation scheme, a few |
---|
23 | * rounds can be played. The number of rounds is specified by a <code>repeats</code> parameter which |
---|
24 | * is equal to 1 by default. This evaluator can be used if problem being solved implements |
---|
25 | * <code>SymmetricCompetitionProblem</code> interface. |
---|
26 | * |
---|
27 | * Since it would be hard to extend this evaluator with generic archiving or fitness sharing, only |
---|
28 | * the simplest settings are available. |
---|
29 | * |
---|
30 | * @author Marcin Szubert |
---|
31 | * |
---|
32 | */ |
---|
33 | public class TournamentCoevolutionaryEvaluator extends CoevolutionaryEvaluator { |
---|
34 | |
---|
35 | private static final String P_REPEATS = "repeats"; |
---|
36 | |
---|
37 | /** |
---|
38 | * Specifies how many times the tournament should be repeated during single evaluation process. |
---|
39 | * More repeats can reduce the noise of this evaluation scheme. |
---|
40 | */ |
---|
41 | private int tournamentRepeats; |
---|
42 | |
---|
43 | private SymmetricCompetitionProblem problem; |
---|
44 | |
---|
45 | /** |
---|
46 | * Represents competing individuals. |
---|
47 | */ |
---|
48 | private Individual[] competitors; |
---|
49 | |
---|
50 | /** |
---|
51 | * Number of competitors - size of the particular subpopulation. |
---|
52 | */ |
---|
53 | private int numCompetitors; |
---|
54 | |
---|
55 | /** |
---|
56 | * Points gathered during the course of competition. |
---|
57 | */ |
---|
58 | private int[] points; |
---|
59 | |
---|
60 | /** |
---|
61 | * An array used as a tournament tree representation. It stores indices of competing |
---|
62 | * individuals. Neighboring indices compete with each other in certain round. |
---|
63 | */ |
---|
64 | private int[] competition; |
---|
65 | |
---|
66 | /** |
---|
67 | * Stores active competitors ready to be divided into pairs. |
---|
68 | */ |
---|
69 | private int[] activeCompetitors; |
---|
70 | |
---|
71 | /** |
---|
72 | * Indicates if particular competitor is still in game. |
---|
73 | */ |
---|
74 | private boolean[] active; |
---|
75 | |
---|
76 | @Override |
---|
77 | public void setup(final EvolutionState state, final Parameter base) { |
---|
78 | super.setup(state, base); |
---|
79 | |
---|
80 | if (!(p_problem instanceof SymmetricCompetitionProblem)) { |
---|
81 | state.output.fatal("Tournament evaluator can be used only with symmetric problems"); |
---|
82 | } else { |
---|
83 | problem = (SymmetricCompetitionProblem) p_problem; |
---|
84 | } |
---|
85 | |
---|
86 | Parameter repeatsParameter = base.push(P_REPEATS); |
---|
87 | tournamentRepeats = state.parameters.getIntWithDefault(repeatsParameter, null, 1); |
---|
88 | if (tournamentRepeats <= 0) { |
---|
89 | state.output.fatal("Tournament repeats parameter can not be negative.", |
---|
90 | repeatsParameter); |
---|
91 | } |
---|
92 | } |
---|
93 | |
---|
94 | @Override |
---|
95 | public void evaluatePopulation(EvolutionState state) { |
---|
96 | for (int subpop = 0; subpop < numSubpopulations; subpop++) { |
---|
97 | prepareTournament(state, subpop); |
---|
98 | for (int r = 0; r < tournamentRepeats; r++) { |
---|
99 | makeTournament(state); |
---|
100 | } |
---|
101 | assignFitness(state); |
---|
102 | } |
---|
103 | } |
---|
104 | |
---|
105 | /** |
---|
106 | * Initializes structures used in the tournament series. |
---|
107 | * |
---|
108 | * @param state |
---|
109 | * current evolutionary state |
---|
110 | * @param subpop |
---|
111 | * index of subpopulation |
---|
112 | */ |
---|
113 | private void prepareTournament(EvolutionState state, int subpop) { |
---|
114 | competitors = state.population.subpops[subpop].individuals; |
---|
115 | numCompetitors = competitors.length; |
---|
116 | |
---|
117 | points = new int[numCompetitors]; |
---|
118 | active = new boolean[numCompetitors]; |
---|
119 | competition = new int[numCompetitors]; |
---|
120 | activeCompetitors = new int[numCompetitors]; |
---|
121 | } |
---|
122 | |
---|
123 | /** |
---|
124 | * Plays a single tournament between earlier selected competitors from particular subpopulation. |
---|
125 | * Each tournament consists of a sequence of rounds. In each round number of active competitors |
---|
126 | * is reduced by half according to the results of their games (approximately - if at the start |
---|
127 | * of the round number of players is odd, one player is given a "bye" and advances to the next |
---|
128 | * round directly). At the beginning of each round there is a drawing which assigns competitors |
---|
129 | * in pairs. |
---|
130 | * |
---|
131 | * @param state |
---|
132 | * current evolutionary state |
---|
133 | */ |
---|
134 | private void makeTournament(EvolutionState state) { |
---|
135 | int numActiveCompetitors; |
---|
136 | for (int c = 0; c < numCompetitors; c++) { |
---|
137 | active[c] = true; |
---|
138 | } |
---|
139 | |
---|
140 | while ((numActiveCompetitors = findActiveCompetitors()) > 1) { |
---|
141 | shuffleCompetitors(state, numActiveCompetitors); |
---|
142 | playTournamentRound(state, numActiveCompetitors); |
---|
143 | } |
---|
144 | } |
---|
145 | |
---|
146 | /** |
---|
147 | * Assigns fitness value to each competing individual according to overall points which it has |
---|
148 | * gathered during the series of tournaments. |
---|
149 | * |
---|
150 | * @param state |
---|
151 | * current evolutionary state |
---|
152 | */ |
---|
153 | private void assignFitness(EvolutionState state) { |
---|
154 | for (int c = 0; c < numCompetitors; c++) { |
---|
155 | Individual competitor = competitors[c]; |
---|
156 | ((SimpleFitness) competitor.fitness).setFitness(state, points[c], false); |
---|
157 | } |
---|
158 | } |
---|
159 | |
---|
160 | /** |
---|
161 | * Finds still active competitors according to <code>active</code> array. Found competitor |
---|
162 | * indices are stored in <code>activeCompetitors</code> array and their number is returned. |
---|
163 | * |
---|
164 | * @return number of still active competitors |
---|
165 | */ |
---|
166 | private int findActiveCompetitors() { |
---|
167 | int leftCompetitors = 0; |
---|
168 | for (int c = 0; c < numCompetitors; c++) { |
---|
169 | if (active[c]) { |
---|
170 | activeCompetitors[leftCompetitors++] = c; |
---|
171 | } |
---|
172 | } |
---|
173 | return leftCompetitors; |
---|
174 | } |
---|
175 | |
---|
176 | /** |
---|
177 | * Randomly shuffles competitors indices taken from < |
---|
178 | * |
---|
179 | * @param state |
---|
180 | * current evolutionary state |
---|
181 | * @param count |
---|
182 | * the number of shuffled competitors |
---|
183 | */ |
---|
184 | private void shuffleCompetitors(EvolutionState state, int count) { |
---|
185 | int left = count; |
---|
186 | for (int i = 0; i < count; i++) { |
---|
187 | int rand = state.random[0].nextInt(left); |
---|
188 | competition[i] = activeCompetitors[rand]; |
---|
189 | activeCompetitors[rand] = activeCompetitors[--left]; |
---|
190 | } |
---|
191 | } |
---|
192 | |
---|
193 | /** |
---|
194 | * Arranges a competition between neighbors in <code>competition</code> array. |
---|
195 | * |
---|
196 | * @param state |
---|
197 | * current evolutionary state |
---|
198 | * @param numLeftCompetitors |
---|
199 | * the number of competitors left |
---|
200 | */ |
---|
201 | private void playTournamentRound(EvolutionState state, int numLeftCompetitors) { |
---|
202 | for (int i = 0; i + 1 < numLeftCompetitors; i += 2) { |
---|
203 | Individual c1 = competitors[competition[i]]; |
---|
204 | Individual c2 = competitors[competition[i + 1]]; |
---|
205 | |
---|
206 | // TODO: consider if it is needed to call compete method twice |
---|
207 | // maybe it should use internal individual's fitness or return both |
---|
208 | // results at once? |
---|
209 | InteractionResult score1 = problem.compete(state, c1, c2).first; |
---|
210 | InteractionResult score2 = problem.compete(state, c2, c1).first; |
---|
211 | |
---|
212 | if (score1.betterThan(score2)) { |
---|
213 | points[competition[i]]++; |
---|
214 | active[competition[i + 1]] = false; |
---|
215 | } else { |
---|
216 | points[competition[i + 1]]++; |
---|
217 | active[competition[i]] = false; |
---|
218 | } |
---|
219 | } |
---|
220 | |
---|
221 | // TODO: in case of odd number of competitors, should the one given a |
---|
222 | // "bye" achieve a point |
---|
223 | // in this round? |
---|
224 | if (numLeftCompetitors % 2 != 0) { |
---|
225 | points[competition[numLeftCompetitors - 1]]++; |
---|
226 | } |
---|
227 | } |
---|
228 | } |
---|