[44] | 1 | /* |
---|
| 2 | Copyright 2009 by Marcin Szubert |
---|
| 3 | Licensed under the Academic Free License version 3.0 |
---|
| 4 | */ |
---|
| 5 | |
---|
| 6 | package cecj.eval; |
---|
| 7 | |
---|
| 8 | import cecj.interaction.InteractionResult; |
---|
| 9 | import cecj.problems.SymmetricCompetitionProblem; |
---|
| 10 | import ec.EvolutionState; |
---|
| 11 | import ec.Individual; |
---|
| 12 | import ec.simple.SimpleFitness; |
---|
| 13 | import ec.util.Parameter; |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Single elimination tournament competitive evaluator. It is different from the other |
---|
| 17 | * coevolutionary evaluators because interactions between individuals must be simulated in strict |
---|
| 18 | * order. It depends on the outcome of previous interaction if the individual can compete further. |
---|
| 19 | * |
---|
| 20 | * Assumes that individuals use <code>SimpleFitness</code>. The fitness assigned by this method is |
---|
| 21 | * equal to the height of the tournament subtree that particular individual has traversed - the |
---|
| 22 | * number of games won. To reduce the inherent noise of the tournament evaluation scheme, a few |
---|
| 23 | * rounds can be played. The number of rounds is specified by a <code>repeats</code> parameter which |
---|
| 24 | * is equal to 1 by default. This evaluator can be used if problem being solved implements |
---|
| 25 | * <code>SymmetricCompetitionProblem</code> interface. |
---|
| 26 | * |
---|
| 27 | * Since it would be hard to extend this evaluator with generic archiving or fitness sharing, only |
---|
| 28 | * the simplest settings are available. |
---|
| 29 | * |
---|
| 30 | * @author Marcin Szubert |
---|
| 31 | * |
---|
| 32 | */ |
---|
| 33 | public class TournamentCoevolutionaryEvaluator extends CoevolutionaryEvaluator { |
---|
| 34 | |
---|
| 35 | private static final String P_REPEATS = "repeats"; |
---|
| 36 | |
---|
| 37 | /** |
---|
| 38 | * Specifies how many times the tournament should be repeated during single evaluation process. |
---|
| 39 | * More repeats can reduce the noise of this evaluation scheme. |
---|
| 40 | */ |
---|
| 41 | private int tournamentRepeats; |
---|
| 42 | |
---|
| 43 | private SymmetricCompetitionProblem problem; |
---|
| 44 | |
---|
| 45 | /** |
---|
| 46 | * Represents competing individuals. |
---|
| 47 | */ |
---|
| 48 | private Individual[] competitors; |
---|
| 49 | |
---|
| 50 | /** |
---|
| 51 | * Number of competitors - size of the particular subpopulation. |
---|
| 52 | */ |
---|
| 53 | private int numCompetitors; |
---|
| 54 | |
---|
| 55 | /** |
---|
| 56 | * Points gathered during the course of competition. |
---|
| 57 | */ |
---|
| 58 | private int[] points; |
---|
| 59 | |
---|
| 60 | /** |
---|
| 61 | * An array used as a tournament tree representation. It stores indices of competing |
---|
| 62 | * individuals. Neighboring indices compete with each other in certain round. |
---|
| 63 | */ |
---|
| 64 | private int[] competition; |
---|
| 65 | |
---|
| 66 | /** |
---|
| 67 | * Stores active competitors ready to be divided into pairs. |
---|
| 68 | */ |
---|
| 69 | private int[] activeCompetitors; |
---|
| 70 | |
---|
| 71 | /** |
---|
| 72 | * Indicates if particular competitor is still in game. |
---|
| 73 | */ |
---|
| 74 | private boolean[] active; |
---|
| 75 | |
---|
| 76 | @Override |
---|
| 77 | public void setup(final EvolutionState state, final Parameter base) { |
---|
| 78 | super.setup(state, base); |
---|
| 79 | |
---|
| 80 | if (!(p_problem instanceof SymmetricCompetitionProblem)) { |
---|
| 81 | state.output.fatal("Tournament evaluator can be used only with symmetric problems"); |
---|
| 82 | } else { |
---|
| 83 | problem = (SymmetricCompetitionProblem) p_problem; |
---|
| 84 | } |
---|
| 85 | |
---|
| 86 | Parameter repeatsParameter = base.push(P_REPEATS); |
---|
| 87 | tournamentRepeats = state.parameters.getIntWithDefault(repeatsParameter, null, 1); |
---|
| 88 | if (tournamentRepeats <= 0) { |
---|
| 89 | state.output.fatal("Tournament repeats parameter can not be negative.", |
---|
| 90 | repeatsParameter); |
---|
| 91 | } |
---|
| 92 | } |
---|
| 93 | |
---|
| 94 | @Override |
---|
| 95 | public void evaluatePopulation(EvolutionState state) { |
---|
| 96 | for (int subpop = 0; subpop < numSubpopulations; subpop++) { |
---|
| 97 | prepareTournament(state, subpop); |
---|
| 98 | for (int r = 0; r < tournamentRepeats; r++) { |
---|
| 99 | makeTournament(state); |
---|
| 100 | } |
---|
| 101 | assignFitness(state); |
---|
| 102 | } |
---|
| 103 | } |
---|
| 104 | |
---|
| 105 | /** |
---|
| 106 | * Initializes structures used in the tournament series. |
---|
| 107 | * |
---|
| 108 | * @param state |
---|
| 109 | * current evolutionary state |
---|
| 110 | * @param subpop |
---|
| 111 | * index of subpopulation |
---|
| 112 | */ |
---|
| 113 | private void prepareTournament(EvolutionState state, int subpop) { |
---|
| 114 | competitors = state.population.subpops[subpop].individuals; |
---|
| 115 | numCompetitors = competitors.length; |
---|
| 116 | |
---|
| 117 | points = new int[numCompetitors]; |
---|
| 118 | active = new boolean[numCompetitors]; |
---|
| 119 | competition = new int[numCompetitors]; |
---|
| 120 | activeCompetitors = new int[numCompetitors]; |
---|
| 121 | } |
---|
| 122 | |
---|
| 123 | /** |
---|
| 124 | * Plays a single tournament between earlier selected competitors from particular subpopulation. |
---|
| 125 | * Each tournament consists of a sequence of rounds. In each round number of active competitors |
---|
| 126 | * is reduced by half according to the results of their games (approximately - if at the start |
---|
| 127 | * of the round number of players is odd, one player is given a "bye" and advances to the next |
---|
| 128 | * round directly). At the beginning of each round there is a drawing which assigns competitors |
---|
| 129 | * in pairs. |
---|
| 130 | * |
---|
| 131 | * @param state |
---|
| 132 | * current evolutionary state |
---|
| 133 | */ |
---|
| 134 | private void makeTournament(EvolutionState state) { |
---|
| 135 | int numActiveCompetitors; |
---|
| 136 | for (int c = 0; c < numCompetitors; c++) { |
---|
| 137 | active[c] = true; |
---|
| 138 | } |
---|
| 139 | |
---|
| 140 | while ((numActiveCompetitors = findActiveCompetitors()) > 1) { |
---|
| 141 | shuffleCompetitors(state, numActiveCompetitors); |
---|
| 142 | playTournamentRound(state, numActiveCompetitors); |
---|
| 143 | } |
---|
| 144 | } |
---|
| 145 | |
---|
| 146 | /** |
---|
| 147 | * Assigns fitness value to each competing individual according to overall points which it has |
---|
| 148 | * gathered during the series of tournaments. |
---|
| 149 | * |
---|
| 150 | * @param state |
---|
| 151 | * current evolutionary state |
---|
| 152 | */ |
---|
| 153 | private void assignFitness(EvolutionState state) { |
---|
| 154 | for (int c = 0; c < numCompetitors; c++) { |
---|
| 155 | Individual competitor = competitors[c]; |
---|
| 156 | ((SimpleFitness) competitor.fitness).setFitness(state, points[c], false); |
---|
| 157 | } |
---|
| 158 | } |
---|
| 159 | |
---|
| 160 | /** |
---|
| 161 | * Finds still active competitors according to <code>active</code> array. Found competitor |
---|
| 162 | * indices are stored in <code>activeCompetitors</code> array and their number is returned. |
---|
| 163 | * |
---|
| 164 | * @return number of still active competitors |
---|
| 165 | */ |
---|
| 166 | private int findActiveCompetitors() { |
---|
| 167 | int leftCompetitors = 0; |
---|
| 168 | for (int c = 0; c < numCompetitors; c++) { |
---|
| 169 | if (active[c]) { |
---|
| 170 | activeCompetitors[leftCompetitors++] = c; |
---|
| 171 | } |
---|
| 172 | } |
---|
| 173 | return leftCompetitors; |
---|
| 174 | } |
---|
| 175 | |
---|
| 176 | /** |
---|
| 177 | * Randomly shuffles competitors indices taken from < |
---|
| 178 | * |
---|
| 179 | * @param state |
---|
| 180 | * current evolutionary state |
---|
| 181 | * @param count |
---|
| 182 | * the number of shuffled competitors |
---|
| 183 | */ |
---|
| 184 | private void shuffleCompetitors(EvolutionState state, int count) { |
---|
| 185 | int left = count; |
---|
| 186 | for (int i = 0; i < count; i++) { |
---|
| 187 | int rand = state.random[0].nextInt(left); |
---|
| 188 | competition[i] = activeCompetitors[rand]; |
---|
| 189 | activeCompetitors[rand] = activeCompetitors[--left]; |
---|
| 190 | } |
---|
| 191 | } |
---|
| 192 | |
---|
| 193 | /** |
---|
| 194 | * Arranges a competition between neighbors in <code>competition</code> array. |
---|
| 195 | * |
---|
| 196 | * @param state |
---|
| 197 | * current evolutionary state |
---|
| 198 | * @param numLeftCompetitors |
---|
| 199 | * the number of competitors left |
---|
| 200 | */ |
---|
| 201 | private void playTournamentRound(EvolutionState state, int numLeftCompetitors) { |
---|
| 202 | for (int i = 0; i + 1 < numLeftCompetitors; i += 2) { |
---|
| 203 | Individual c1 = competitors[competition[i]]; |
---|
| 204 | Individual c2 = competitors[competition[i + 1]]; |
---|
| 205 | |
---|
| 206 | // TODO: consider if it is needed to call compete method twice |
---|
| 207 | // maybe it should use internal individual's fitness or return both |
---|
| 208 | // results at once? |
---|
| 209 | InteractionResult score1 = problem.compete(state, c1, c2).first; |
---|
| 210 | InteractionResult score2 = problem.compete(state, c2, c1).first; |
---|
| 211 | |
---|
| 212 | if (score1.betterThan(score2)) { |
---|
| 213 | points[competition[i]]++; |
---|
| 214 | active[competition[i + 1]] = false; |
---|
| 215 | } else { |
---|
| 216 | points[competition[i + 1]]++; |
---|
| 217 | active[competition[i]] = false; |
---|
| 218 | } |
---|
| 219 | } |
---|
| 220 | |
---|
| 221 | // TODO: in case of odd number of competitors, should the one given a |
---|
| 222 | // "bye" achieve a point |
---|
| 223 | // in this round? |
---|
| 224 | if (numLeftCompetitors % 2 != 0) { |
---|
| 225 | points[competition[numLeftCompetitors - 1]]++; |
---|
| 226 | } |
---|
| 227 | } |
---|
| 228 | } |
---|