1 | /* |
---|
2 | Copyright 2009 by Marcin Szubert |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | */ |
---|
5 | |
---|
6 | package cecj.eval; |
---|
7 | |
---|
8 | import java.util.ArrayList; |
---|
9 | import java.util.List; |
---|
10 | |
---|
11 | import cecj.fitness.FitnessAggregateMethod; |
---|
12 | import cecj.interaction.InteractionResult; |
---|
13 | import cecj.interaction.InteractionScheme; |
---|
14 | import cecj.sampling.SamplingMethod; |
---|
15 | import cecj.statistics.CoevolutionaryStatistics; |
---|
16 | |
---|
17 | import ec.EvolutionState; |
---|
18 | import ec.Individual; |
---|
19 | import ec.util.Parameter; |
---|
20 | |
---|
21 | /** |
---|
22 | * |
---|
23 | * Simple coevolutionary evaluator without any additional mechanisms. |
---|
24 | * |
---|
25 | * This is the simplest implementation of conventional coevolutionary evaluation where interactions |
---|
26 | * between individuals can be performed in an arbitrary order. However, the character and the scope |
---|
27 | * of interactions can be different Ð it is defined by instantiating appropriate |
---|
28 | * <code>InteractionScheme</code> subclass. The evaluation proceeds as follows. First of all, a |
---|
29 | * reference set of opponent individuals is selected from each subpopulation. This task is handled |
---|
30 | * by a <code>SamplingMethod</code> realization. Distinct sampling methods can be used by different |
---|
31 | * subpopulations. Next, each subpopulation individuals are confronted with previously selected |
---|
32 | * opponents from subpopulations pointed by the concrete <code>InteractionScheme</code> class. |
---|
33 | * Finally, <code>FitnessAggregateMethod</code> is responsible for aggregating outcomes of these |
---|
34 | * confrontations into a single fitness measure which is used later during selection stage of the |
---|
35 | * evolutionary process. It evaluates individuals according to the outcomes of its interactions with |
---|
36 | * other individuals. Interactions are not restricted to intraspecific or interspecific type, i.e. |
---|
37 | * opponents can be chosen from the same population or any other coevolving population. |
---|
38 | * |
---|
39 | * In contrast to <code>TournamentCoevolutionaryEvaluator</code> all interactions can be simulated |
---|
40 | * in any order. There are no sequential dependencies between interactions. |
---|
41 | * |
---|
42 | * @author Marcin Szubert |
---|
43 | * |
---|
44 | */ |
---|
45 | public class SimpleCoevolutionaryEvaluator extends CoevolutionaryEvaluator { |
---|
46 | |
---|
47 | protected static final String P_SUBPOP = "subpop"; |
---|
48 | private static final String P_STATISTICS = "statistics"; |
---|
49 | private static final String P_FITNESS_METHOD = "fitness-method"; |
---|
50 | private static final String P_POP_INDS_WEIGHT = "pop-inds-weight"; |
---|
51 | private static final String P_SAMPLING_METHOD = "sampling-method"; |
---|
52 | private static final String P_INTERACTION_SCHEME = "interaction-scheme"; |
---|
53 | |
---|
54 | /** |
---|
55 | * Tests used to interact with candidate solutions. |
---|
56 | */ |
---|
57 | protected List<List<Individual>> opponents; |
---|
58 | |
---|
59 | /** |
---|
60 | * Methods of sampling the opponents from particular populations. |
---|
61 | */ |
---|
62 | protected SamplingMethod[] samplingMethod; |
---|
63 | |
---|
64 | /** |
---|
65 | * The Method of aggregating multiple interaction outcomes into single value. |
---|
66 | */ |
---|
67 | protected FitnessAggregateMethod[] fitnessAggregateMethod; |
---|
68 | |
---|
69 | /** |
---|
70 | * Specifies how interactions between populations look like. |
---|
71 | */ |
---|
72 | protected InteractionScheme interactionScheme; |
---|
73 | |
---|
74 | /** |
---|
75 | * Gathers statistics about evaluation stage. |
---|
76 | */ |
---|
77 | protected CoevolutionaryStatistics statistics; |
---|
78 | |
---|
79 | /** |
---|
80 | * Indicates how important are population opponents with respect to potential archival |
---|
81 | * opponents. |
---|
82 | */ |
---|
83 | private int popIndsWeight; |
---|
84 | |
---|
85 | @Override |
---|
86 | public void setup(final EvolutionState state, final Parameter base) { |
---|
87 | super.setup(state, base); |
---|
88 | |
---|
89 | Parameter interactionSchemeParam = base.push(P_INTERACTION_SCHEME); |
---|
90 | interactionScheme = (InteractionScheme) (state.parameters.getInstanceForParameter( |
---|
91 | interactionSchemeParam, null, InteractionScheme.class)); |
---|
92 | interactionScheme.setup(state, interactionSchemeParam); |
---|
93 | |
---|
94 | Parameter popIndsWeightParam = base.push(P_POP_INDS_WEIGHT); |
---|
95 | popIndsWeight = state.parameters.getIntWithDefault(popIndsWeightParam, null, 1); |
---|
96 | |
---|
97 | Parameter statisticsParam = base.push(P_STATISTICS); |
---|
98 | if (state.parameters.exists(statisticsParam)) { |
---|
99 | statistics = (CoevolutionaryStatistics) (state.parameters.getInstanceForParameter( |
---|
100 | statisticsParam, null, CoevolutionaryStatistics.class)); |
---|
101 | statistics.setup(state, statisticsParam); |
---|
102 | } |
---|
103 | |
---|
104 | opponents = new ArrayList<List<Individual>>(numSubpopulations); |
---|
105 | samplingMethod = new SamplingMethod[numSubpopulations]; |
---|
106 | fitnessAggregateMethod = new FitnessAggregateMethod[numSubpopulations]; |
---|
107 | |
---|
108 | for (int subpop = 0; subpop < numSubpopulations; subpop++) { |
---|
109 | opponents.add(new ArrayList<Individual>()); |
---|
110 | setupSubpopulation(state, base, subpop); |
---|
111 | } |
---|
112 | } |
---|
113 | |
---|
114 | /** |
---|
115 | * Sets up fitness aggregate methods and sampling method for the given subpopulation. |
---|
116 | * |
---|
117 | * @param state |
---|
118 | * the current evolutionary state |
---|
119 | * @param base |
---|
120 | * the base parameter |
---|
121 | * @param subpop |
---|
122 | * the subpopulation index |
---|
123 | */ |
---|
124 | private void setupSubpopulation(EvolutionState state, Parameter base, int subpop) { |
---|
125 | Parameter samplingMethodParam = base.push(P_SUBPOP).push("" + subpop).push( |
---|
126 | P_SAMPLING_METHOD); |
---|
127 | samplingMethod[subpop] = (SamplingMethod) (state.parameters.getInstanceForParameter( |
---|
128 | samplingMethodParam, null, SamplingMethod.class)); |
---|
129 | samplingMethod[subpop].setup(state, samplingMethodParam); |
---|
130 | |
---|
131 | Parameter fitnessMethodParam = base.push(P_SUBPOP).push("" + subpop).push(P_FITNESS_METHOD); |
---|
132 | fitnessAggregateMethod[subpop] = (FitnessAggregateMethod) (state.parameters |
---|
133 | .getInstanceForParameter(fitnessMethodParam, null, FitnessAggregateMethod.class)); |
---|
134 | } |
---|
135 | |
---|
136 | @Override |
---|
137 | public void evaluatePopulation(EvolutionState state) { |
---|
138 | for (int subpop = 0; subpop < numSubpopulations; subpop++) { |
---|
139 | opponents.set(subpop, findOpponentsFromSubpopulation(state, subpop)); |
---|
140 | } |
---|
141 | |
---|
142 | for (int subpop = 0; subpop < numSubpopulations; subpop++) { |
---|
143 | List<List<InteractionResult>> subpopulationResults = interactionScheme |
---|
144 | .performInteractions(state, subpop, opponents); |
---|
145 | |
---|
146 | fitnessAggregateMethod[subpop].prepareToAggregate(state, subpop); |
---|
147 | fitnessAggregateMethod[subpop].addToAggregate(state, subpop, subpopulationResults, |
---|
148 | popIndsWeight); |
---|
149 | fitnessAggregateMethod[subpop].assignFitness(state, subpop); |
---|
150 | |
---|
151 | if (statistics != null) { |
---|
152 | statistics.printInteractionResults(state, subpopulationResults, subpop); |
---|
153 | } |
---|
154 | } |
---|
155 | } |
---|
156 | |
---|
157 | /** |
---|
158 | * Samples subpopulation to choose a reference set of individuals. Other individuals can be |
---|
159 | * evaluated on the basis of interactions with this reference set. It may happen that |
---|
160 | * individuals from the same subpopulation are tested int this way - it depends on |
---|
161 | * |
---|
162 | * @param subpop |
---|
163 | * the index of subpopulation |
---|
164 | * @return a list of individuals sampled from the given subpopulation |
---|
165 | */ |
---|
166 | private List<Individual> findOpponentsFromSubpopulation(EvolutionState state, int subpop) { |
---|
167 | return samplingMethod[subpop].sample(state, state.population.subpops[subpop].individuals); |
---|
168 | } |
---|
169 | |
---|
170 | /** |
---|
171 | * Returns the interaction scheme used during the evaluation. |
---|
172 | * |
---|
173 | * @return the interaction scheme used by this evaluator |
---|
174 | */ |
---|
175 | public InteractionScheme getInteractionScheme() { |
---|
176 | return interactionScheme; |
---|
177 | } |
---|
178 | } |
---|