1 | package cecj.eval; |
---|
2 | |
---|
3 | import java.util.ArrayList; |
---|
4 | import java.util.List; |
---|
5 | |
---|
6 | import cecj.fitness.FitnessAggregateMethod; |
---|
7 | import cecj.interaction.InteractionResult; |
---|
8 | import cecj.interaction.InteractionScheme; |
---|
9 | import cecj.sampling.SamplingMethod; |
---|
10 | import cecj.statistics.CoevolutionaryStatistics; |
---|
11 | |
---|
12 | import ec.EvolutionState; |
---|
13 | import ec.Individual; |
---|
14 | import ec.util.Parameter; |
---|
15 | |
---|
16 | /** |
---|
17 | * Simple coevolutionary evaluator without any additional mechanisms. |
---|
18 | * |
---|
19 | * It evaluates individuals according to outcomes of its interactions with other individuals. |
---|
20 | * Interactions are not restricted to intraspecific or interspecific type, i.e. opponents can be |
---|
21 | * choosen from the same population or any other coevolving population. |
---|
22 | * |
---|
23 | * In contrast to <code>TournamentCoevolutionaryEvaluator</code> all interactions can be simulated |
---|
24 | * in any order. There are no sequantial dependencies between interactions. |
---|
25 | * |
---|
26 | * @author Marcin Szubert |
---|
27 | * |
---|
28 | */ |
---|
29 | public class SimpleCoevolutionaryEvaluator extends CoevolutionaryEvaluator { |
---|
30 | |
---|
31 | protected static final String P_SUBPOP = "subpop"; |
---|
32 | private static final String P_STATISTICS = "statistics"; |
---|
33 | private static final String P_FITNESS_METHOD = "fitness-method"; |
---|
34 | private static final String P_POP_INDS_WEIGHT = "pop-inds-weight"; |
---|
35 | private static final String P_SAMPLING_METHOD = "sampling-method"; |
---|
36 | private static final String P_INTERACTION_SCHEME = "interaction-scheme"; |
---|
37 | |
---|
38 | /** |
---|
39 | * Tests used to interact with candidate solutions. |
---|
40 | */ |
---|
41 | protected List<List<Individual>> opponents; |
---|
42 | |
---|
43 | /** |
---|
44 | * Methods of sampling the opponents from particular populations. |
---|
45 | */ |
---|
46 | protected SamplingMethod[] samplingMethod; |
---|
47 | |
---|
48 | /** |
---|
49 | * Method of aggregating multiple interaction outcomes into single value. |
---|
50 | */ |
---|
51 | protected FitnessAggregateMethod[] fitnessAggregateMethod; |
---|
52 | |
---|
53 | /** |
---|
54 | * Specifies how interactions between populations look like. |
---|
55 | */ |
---|
56 | protected InteractionScheme interactionScheme; |
---|
57 | |
---|
58 | protected CoevolutionaryStatistics statistics; |
---|
59 | |
---|
60 | private int popIndsWeight; |
---|
61 | |
---|
62 | @Override |
---|
63 | public void setup(final EvolutionState state, final Parameter base) { |
---|
64 | super.setup(state, base); |
---|
65 | |
---|
66 | Parameter interactionSchemeParam = base.push(P_INTERACTION_SCHEME); |
---|
67 | interactionScheme = (InteractionScheme) (state.parameters |
---|
68 | .getInstanceForParameter(interactionSchemeParam, null, InteractionScheme.class)); |
---|
69 | interactionScheme.setup(state, interactionSchemeParam); |
---|
70 | |
---|
71 | Parameter popIndsWeightParam = base.push(P_POP_INDS_WEIGHT); |
---|
72 | popIndsWeight = state.parameters.getIntWithDefault(popIndsWeightParam, null, 1); |
---|
73 | |
---|
74 | Parameter statisticsParam = base.push(P_STATISTICS); |
---|
75 | if (state.parameters.exists(statisticsParam)) { |
---|
76 | statistics = (CoevolutionaryStatistics) (state.parameters |
---|
77 | .getInstanceForParameter(statisticsParam, null, CoevolutionaryStatistics.class)); |
---|
78 | statistics.setup(state, statisticsParam); |
---|
79 | } |
---|
80 | |
---|
81 | opponents = new ArrayList<List<Individual>>(numSubpopulations); |
---|
82 | samplingMethod = new SamplingMethod[numSubpopulations]; |
---|
83 | fitnessAggregateMethod = new FitnessAggregateMethod[numSubpopulations]; |
---|
84 | |
---|
85 | for (int subpop = 0; subpop < numSubpopulations; subpop++) { |
---|
86 | opponents.add(new ArrayList<Individual>()); |
---|
87 | setupSubpopulation(state, base, subpop); |
---|
88 | } |
---|
89 | } |
---|
90 | |
---|
91 | /** |
---|
92 | * Sets up fitness aggregate methods and sampling method for the given subpopulation. |
---|
93 | * |
---|
94 | * @param state |
---|
95 | * the current evolution state |
---|
96 | * @param base |
---|
97 | * the base parameter |
---|
98 | * @param subpop |
---|
99 | * the subpopulation index |
---|
100 | */ |
---|
101 | private void setupSubpopulation(EvolutionState state, Parameter base, int subpop) { |
---|
102 | Parameter samplingMethodParam = base.push(P_SUBPOP).push("" + subpop) |
---|
103 | .push(P_SAMPLING_METHOD); |
---|
104 | samplingMethod[subpop] = (SamplingMethod) (state.parameters |
---|
105 | .getInstanceForParameter(samplingMethodParam, null, SamplingMethod.class)); |
---|
106 | samplingMethod[subpop].setup(state, samplingMethodParam); |
---|
107 | |
---|
108 | Parameter fitnessMethodParam = base.push(P_SUBPOP).push("" + subpop).push(P_FITNESS_METHOD); |
---|
109 | fitnessAggregateMethod[subpop] = (FitnessAggregateMethod) (state.parameters |
---|
110 | .getInstanceForParameter(fitnessMethodParam, null, FitnessAggregateMethod.class)); |
---|
111 | } |
---|
112 | |
---|
113 | @Override |
---|
114 | public void evaluatePopulation(EvolutionState state) { |
---|
115 | for (int subpop = 0; subpop < numSubpopulations; subpop++) { |
---|
116 | opponents.set(subpop, findOpponentsFromSubpopulation(state, subpop)); |
---|
117 | } |
---|
118 | |
---|
119 | for (int subpop = 0; subpop < numSubpopulations; subpop++) { |
---|
120 | List<List<InteractionResult>> subpopulationResults = interactionScheme |
---|
121 | .performInteractions(state, subpop, opponents); |
---|
122 | |
---|
123 | fitnessAggregateMethod[subpop].prepareToAggregate(state, subpop); |
---|
124 | fitnessAggregateMethod[subpop].addToAggregate(state, subpop, subpopulationResults, |
---|
125 | popIndsWeight); |
---|
126 | fitnessAggregateMethod[subpop].assignFitness(state, subpop); |
---|
127 | |
---|
128 | if (statistics != null) { |
---|
129 | statistics.printInteractionResults(state, subpopulationResults, subpop); |
---|
130 | } |
---|
131 | } |
---|
132 | } |
---|
133 | |
---|
134 | /** |
---|
135 | * Samples subpopulation to choose a reference set of individuals. Other individuals can be |
---|
136 | * evaluated on the basis of interactions with this reference set. It may happen that |
---|
137 | * individuals from the same subpopulation are tested int this way - it depends on |
---|
138 | * |
---|
139 | * @param subpop |
---|
140 | */ |
---|
141 | private List<Individual> findOpponentsFromSubpopulation(EvolutionState state, int subpop) { |
---|
142 | return samplingMethod[subpop].sample(state, state.population.subpops[subpop].individuals); |
---|
143 | } |
---|
144 | |
---|
145 | public InteractionScheme getInteractionScheme() { |
---|
146 | return interactionScheme; |
---|
147 | } |
---|
148 | } |
---|