[44] | 1 | /* |
---|
| 2 | Copyright 2009 by Marcin Szubert |
---|
| 3 | Licensed under the Academic Free License version 3.0 |
---|
| 4 | */ |
---|
| 5 | |
---|
| 6 | package cecj.eval; |
---|
| 7 | |
---|
| 8 | import java.util.ArrayList; |
---|
| 9 | import java.util.List; |
---|
| 10 | |
---|
| 11 | import cecj.archive.ArchivingSubpopulation; |
---|
| 12 | import cecj.archive.CoevolutionaryArchive; |
---|
| 13 | import cecj.interaction.InteractionResult; |
---|
| 14 | import cecj.sampling.SamplingMethod; |
---|
| 15 | |
---|
| 16 | import ec.EvolutionState; |
---|
| 17 | import ec.Individual; |
---|
| 18 | import ec.util.Parameter; |
---|
| 19 | |
---|
| 20 | /** |
---|
| 21 | * Extends the simple evaluation process with an archiving mechanism. |
---|
| 22 | * |
---|
| 23 | * The evaluation procedure is realized in the following manner. Firstly, after taking simple |
---|
| 24 | * evaluation steps as in the superclass, additional opponents are selected among archival |
---|
| 25 | * individuals (an archive is maintained for each subpopulation). Outcomes of the interactions with |
---|
| 26 | * such opponents are added to results obtained by the superclass and aggregated together. |
---|
| 27 | * Eventually, subpopulation individuals are submitted to the archive which decides if any of them |
---|
| 28 | * is worth keeping. While interaction scheme and fitness aggregation method are inherited from the |
---|
| 29 | * <code>SimpleCoevolutionaryEvaluator</code>, archival sampling methods must be defined separately |
---|
| 30 | * for each of the archives. |
---|
| 31 | * |
---|
| 32 | * Often, opponents sampled from the population are less competent than these from the archive; to |
---|
| 33 | * address this issue, additional parameters were created that specify the relative importance of |
---|
| 34 | * opponents from both sources - <code>archive-inds-weight</code> and <code>pop-inds-weight</code>. |
---|
| 35 | * |
---|
| 36 | * @author Marcin Szubert |
---|
| 37 | * |
---|
| 38 | */ |
---|
| 39 | public class ArchivingCoevolutionaryEvaluator extends SimpleCoevolutionaryEvaluator { |
---|
| 40 | |
---|
| 41 | private static final String P_ARCHIVE = "archive"; |
---|
| 42 | private static final String P_ARCHIVE_INDS_WEIGHT = "archive-inds-weight"; |
---|
| 43 | private static final String P_ARCHIVE_SAMPLING_METHOD = "archive-sampling-method"; |
---|
| 44 | |
---|
| 45 | private CoevolutionaryArchive archive; |
---|
| 46 | |
---|
| 47 | private List<List<Individual>> archiveOpponents; |
---|
| 48 | |
---|
| 49 | private SamplingMethod[] archiveSamplingMethod; |
---|
| 50 | |
---|
| 51 | private int archiveIndsWeight; |
---|
| 52 | |
---|
| 53 | @Override |
---|
| 54 | public void setup(final EvolutionState state, final Parameter base) { |
---|
| 55 | super.setup(state, base); |
---|
| 56 | |
---|
| 57 | Parameter archiveParam = base.push(P_ARCHIVE); |
---|
| 58 | archive = (CoevolutionaryArchive) (state.parameters.getInstanceForParameter(archiveParam, |
---|
| 59 | null, CoevolutionaryArchive.class)); |
---|
| 60 | archive.setup(state, base.push(P_ARCHIVE)); |
---|
| 61 | |
---|
| 62 | Parameter archiveIndsWeightParam = base.push(P_ARCHIVE_INDS_WEIGHT); |
---|
| 63 | archiveIndsWeight = state.parameters.getIntWithDefault(archiveIndsWeightParam, null, 1); |
---|
| 64 | |
---|
| 65 | archiveOpponents = new ArrayList<List<Individual>>(numSubpopulations); |
---|
| 66 | archiveSamplingMethod = new SamplingMethod[numSubpopulations]; |
---|
| 67 | |
---|
| 68 | for (int subpop = 0; subpop < numSubpopulations; subpop++) { |
---|
| 69 | archiveOpponents.add(new ArrayList<Individual>()); |
---|
| 70 | setupArchivingSubpopulation(state, base, subpop); |
---|
| 71 | } |
---|
| 72 | } |
---|
| 73 | |
---|
| 74 | private void setupArchivingSubpopulation(EvolutionState state, Parameter base, int subpop) { |
---|
| 75 | Parameter samplingMethodParam = base.push(P_SUBPOP).push("" + subpop).push( |
---|
| 76 | P_ARCHIVE_SAMPLING_METHOD); |
---|
| 77 | archiveSamplingMethod[subpop] = (SamplingMethod) (state.parameters.getInstanceForParameter( |
---|
| 78 | samplingMethodParam, null, SamplingMethod.class)); |
---|
| 79 | archiveSamplingMethod[subpop].setup(state, samplingMethodParam); |
---|
| 80 | } |
---|
| 81 | |
---|
| 82 | @Override |
---|
| 83 | public void evaluatePopulation(EvolutionState state) { |
---|
| 84 | if (!(state.population.subpops[0] instanceof ArchivingSubpopulation)) { |
---|
| 85 | state.output.fatal("Archiving evaluator requires archiving subpopulation"); |
---|
| 86 | } |
---|
| 87 | |
---|
| 88 | super.evaluatePopulation(state); |
---|
| 89 | |
---|
| 90 | for (int subpop = 0; subpop < numSubpopulations; subpop++) { |
---|
| 91 | archiveOpponents.set(subpop, findOpponentsFromArchive(state, subpop)); |
---|
| 92 | } |
---|
| 93 | |
---|
| 94 | for (int subpop = 0; subpop < numSubpopulations; subpop++) { |
---|
| 95 | List<List<InteractionResult>> subpopulationResults = interactionScheme |
---|
| 96 | .performInteractions(state, subpop, archiveOpponents); |
---|
| 97 | |
---|
| 98 | fitnessAggregateMethod[subpop].addToAggregate(state, subpop, subpopulationResults, |
---|
| 99 | archiveIndsWeight); |
---|
| 100 | fitnessAggregateMethod[subpop].assignFitness(state, subpop); |
---|
| 101 | |
---|
| 102 | if (statistics != null) { |
---|
| 103 | statistics.printInteractionResults(state, subpopulationResults, subpop); |
---|
| 104 | } |
---|
| 105 | } |
---|
| 106 | |
---|
| 107 | archive.submit(state); |
---|
| 108 | } |
---|
| 109 | |
---|
| 110 | private List<Individual> findOpponentsFromArchive(EvolutionState state, int subpop) { |
---|
| 111 | List<Individual> archivalInds = ((ArchivingSubpopulation) state.population.subpops[subpop]) |
---|
| 112 | .getArchivalIndividuals(); |
---|
| 113 | return archiveSamplingMethod[subpop].sample(state, archivalInds); |
---|
| 114 | } |
---|
| 115 | } |
---|