1 | /* |
---|
2 | Copyright 2009 by Marcin Szubert |
---|
3 | Licensed under the Academic Free License version 3.0 |
---|
4 | */ |
---|
5 | |
---|
6 | package cecj.archive; |
---|
7 | |
---|
8 | import java.util.ArrayList; |
---|
9 | import java.util.HashSet; |
---|
10 | import java.util.List; |
---|
11 | import java.util.Set; |
---|
12 | |
---|
13 | import ec.EvolutionState; |
---|
14 | import ec.Individual; |
---|
15 | import ec.util.Parameter; |
---|
16 | |
---|
17 | /** |
---|
18 | * Layered Pareto-Coevolution Archive. |
---|
19 | * |
---|
20 | * This archive is a modified version of the IPCA archive. While the original one can grow |
---|
21 | * indefinitely (tests are never removed from the archive), this type of archive limits the maximum |
---|
22 | * number of stored individuals. However, this goal is achieved for the price of reducing the |
---|
23 | * reliability of the algorithm. After appending non-dominated candidate solutions and useful tests |
---|
24 | * to appropriate archives, <code>maintainLayers</code> and <code>updateTestArchive</code> methods |
---|
25 | * are invoked in order to decrease the amount of used memory. The first one checks which candidate |
---|
26 | * solutions belong to the first <code>num-layers</code> Pareto layers and keeps them in the |
---|
27 | * archive. The second retains only these tests which make distinctions between neighboring layers. |
---|
28 | * |
---|
29 | * @author Marcin Szubert |
---|
30 | * |
---|
31 | */ |
---|
32 | public class LAPCArchive extends ParetoCoevolutionArchive { |
---|
33 | |
---|
34 | private static final String P_NUM_LAYERS = "num-layers"; |
---|
35 | |
---|
36 | private int numLayers; |
---|
37 | |
---|
38 | private List<List<Individual>> layers; |
---|
39 | |
---|
40 | @Override |
---|
41 | public void setup(EvolutionState state, Parameter base) { |
---|
42 | super.setup(state, base); |
---|
43 | |
---|
44 | Parameter numLayersParameter = base.push(P_NUM_LAYERS); |
---|
45 | numLayers = state.parameters.getInt(numLayersParameter, null, 1); |
---|
46 | if (numLayers <= 0) { |
---|
47 | state.output.fatal("Number of LAPCA layers must be > 0.\n"); |
---|
48 | } |
---|
49 | |
---|
50 | layers = new ArrayList<List<Individual>>(numLayers); |
---|
51 | } |
---|
52 | |
---|
53 | /* |
---|
54 | * It is implemented in a IPCA-like way. Another method is to extend both existing archives by |
---|
55 | * new individuals, then find first n layers of candidates with respect to all tests in the |
---|
56 | * archive and in the population and finally select necessary tests making distinctions between |
---|
57 | * layers. |
---|
58 | */ |
---|
59 | @Override |
---|
60 | protected void submit(EvolutionState state, List<Individual> candidates, |
---|
61 | List<Individual> cArchive, List<Individual> tests, List<Individual> tArchive) { |
---|
62 | List<Individual> testsCopy = new ArrayList<Individual>(tests); |
---|
63 | List<Individual> usefulTests; |
---|
64 | |
---|
65 | for (Individual candidate : candidates) { |
---|
66 | if (isUseful(state, candidate, cArchive, tArchive, testsCopy)) { |
---|
67 | usefulTests = findUsefulTests(state, candidate, cArchive, tArchive, testsCopy); |
---|
68 | |
---|
69 | cArchive.add(candidate); |
---|
70 | tArchive.addAll(usefulTests); |
---|
71 | testsCopy.removeAll(usefulTests); |
---|
72 | } |
---|
73 | } |
---|
74 | |
---|
75 | maintainLayers(state, cArchive, tArchive); |
---|
76 | updateTestArchive(state, tArchive); |
---|
77 | } |
---|
78 | |
---|
79 | private void updateTestArchive(EvolutionState state, List<Individual> tArchive) { |
---|
80 | Set<Individual> tset = new HashSet<Individual>(); |
---|
81 | tset.addAll(findDistinguishingTests(state, layers.get(0), layers.get(0), tArchive)); |
---|
82 | for (int l = 1; l < numLayers; l++) { |
---|
83 | tset.addAll(findDistinguishingTests(state, layers.get(l - 1), layers.get(l), tArchive)); |
---|
84 | } |
---|
85 | |
---|
86 | tArchive.clear(); |
---|
87 | tArchive.addAll(tset); |
---|
88 | } |
---|
89 | |
---|
90 | private List<Individual> findDistinguishingTests(EvolutionState state, List<Individual> layer1, |
---|
91 | List<Individual> layer2, List<Individual> tests) { |
---|
92 | List<Individual> distinguishingTests = new ArrayList<Individual>(); |
---|
93 | for (Individual candidate1 : layer1) { |
---|
94 | for (Individual candidate2 : layer2) { |
---|
95 | if (candidate1.equals(candidate2)) |
---|
96 | continue; |
---|
97 | Individual test = findUsefulTest(state, candidate1, candidate2, tests); |
---|
98 | if ((test != null) && (!distinguishingTests.contains(test))) { |
---|
99 | distinguishingTests.add(test); |
---|
100 | } |
---|
101 | } |
---|
102 | } |
---|
103 | return distinguishingTests; |
---|
104 | } |
---|
105 | |
---|
106 | private void maintainLayers(EvolutionState state, List<Individual> cArchive, |
---|
107 | List<Individual> tArchive) { |
---|
108 | List<Individual> cArchiveCopy = new ArrayList<Individual>(cArchive); |
---|
109 | for (int layer = 0; layer < numLayers; layer++) { |
---|
110 | List<Individual> frontPareto = findNonDominatedCandidates(state, cArchiveCopy, tArchive); |
---|
111 | layers.set(layer, frontPareto); |
---|
112 | cArchiveCopy.removeAll(frontPareto); |
---|
113 | } |
---|
114 | cArchive.removeAll(cArchiveCopy); |
---|
115 | } |
---|
116 | |
---|
117 | private List<Individual> findNonDominatedCandidates(EvolutionState state, |
---|
118 | List<Individual> cArchive, List<Individual> tArchive) { |
---|
119 | List<Individual> result = new ArrayList<Individual>(); |
---|
120 | for (Individual candidate : cArchive) { |
---|
121 | if (!isDominated(state, candidate, cArchive, tArchive)) { |
---|
122 | result.add(candidate); |
---|
123 | } |
---|
124 | } |
---|
125 | return result; |
---|
126 | } |
---|
127 | |
---|
128 | } |
---|