1 | """Simple examples of using the "frams" module to communicate directly with the Framsticks library (dll/so).
|
---|
2 |
|
---|
3 | For an introduction to Framsticks, its usage and scripting, see https://www.youtube.com/playlist?list=PLkPlXm7pOPatTl3_Gecx8ZaCVGeH4UV1L
|
---|
4 | For a list of available classes, objects, methods and fields, see http://www.framsticks.com/files/classdoc/
|
---|
5 | For a number of examples of scripting, see the "scripts" directory in Framsticks distribution.
|
---|
6 | """
|
---|
7 |
|
---|
8 | import sys
|
---|
9 | import frams
|
---|
10 |
|
---|
11 | frams.init(*(sys.argv[1:])) # pass whatever args we have, init() is the right place to deal with different scenarios:
|
---|
12 | # frams.init() - should try to figure out everything (and might fail)
|
---|
13 | # frams.init('path/to/lib') - load the library from the specified directory and configure Framsticks path as "data" inside this directory
|
---|
14 | # frams.init('path/to/lib','-d/tmp/workdir/data') - as above, but set the working (writable) directory somewhere else (see also -D)
|
---|
15 | # frams.init('path/to/lib','-Lframs-objects-alt.dll') - use specified library location and non-default file name
|
---|
16 |
|
---|
17 | print('Available objects:', dir(frams))
|
---|
18 | print()
|
---|
19 |
|
---|
20 |
|
---|
21 | def extValueDetails(v):
|
---|
22 | """A helper function to display basic information about a variable of type ExtValue."""
|
---|
23 | return '\t"' + str(v) + '" frams type=' + str(v._type()) + ' frams class=' + str(v._class()) + ' python type=' + str(type(v._value()))
|
---|
24 |
|
---|
25 |
|
---|
26 | dic_as_string = '[100,2.2,"abc",[null,[],{}],XYZ[9,8,7]]'
|
---|
27 | print("We have the following string:\n\t'%s'" % dic_as_string)
|
---|
28 | print("Looks like a serialized dictionary, let's ask Framsticks String.deserialize() to do its job.")
|
---|
29 | v = frams.String.deserialize(dic_as_string)
|
---|
30 | print("Framsticks String.deserialize() returned\n\t", type(v))
|
---|
31 | print("More specifically, it is:")
|
---|
32 | print(extValueDetails(v))
|
---|
33 | print("Even though it is ExtValue (Framsticks' Vector), it supports iteration like a python vector, so let's inspect its elements:")
|
---|
34 | for e in v:
|
---|
35 | print(extValueDetails(e))
|
---|
36 |
|
---|
37 | print("Now let's play with the Framsticks simulator. Let's create a Genotype object and set fields in its custom 'data' dictionary.")
|
---|
38 | g = frams.GenePools[0].add('X')
|
---|
39 | g.name = "Snakis Py"
|
---|
40 | g.data['custom'] = 123.456
|
---|
41 | g.data['a'] = 'b' # implicit conversion, looks like python dictionary but still converts '3' and '4' to ExtValue
|
---|
42 | dic = frams.Dictionary.new() # let's create a Dictionary object from Framsticks
|
---|
43 | dic.set('1', '2') # calling set() from Framsticks Dictionary
|
---|
44 | dic['3'] = '4' # implicit conversion, looks like python dictionary but still converts '3' and '4' to ExtValue
|
---|
45 | g.data['d'] = dic
|
---|
46 | print(extValueDetails(g))
|
---|
47 |
|
---|
48 | print("Let's add a few mutants and display their data:")
|
---|
49 | for more in range(5):
|
---|
50 | frams.GenePools[0].add(frams.GenMan.mutate(g.geno))
|
---|
51 |
|
---|
52 | for g in frams.GenePools[0]:
|
---|
53 | print("\t%d. name='%s'\tgenotype='%s'\tdata=%s" % (g.index._value(), str(g.name), str(g.genotype), str(g.data)))
|
---|
54 |
|
---|
55 | print("Let's now change some property of the simulation. Current water level is", frams.World.wrldwat)
|
---|
56 | frams.World.wrldwat = 0.5
|
---|
57 | print("Now water level is", frams.World.wrldwat)
|
---|
58 | frams.World.wrldwat = frams.World.wrldwat._value() + 0.7
|
---|
59 | print("Now water level is", frams.World.wrldwat)
|
---|
60 |
|
---|
61 | initial_genotype = 'X(X,RX(X[T],X[G]))' # simple body with touch and gyroscope sensors
|
---|
62 | print("Let's perform a few simulation steps of the initial genotype:", initial_genotype)
|
---|
63 | frams.ExpProperties.initialgen = initial_genotype
|
---|
64 | frams.ExpProperties.p_mut = 0 # no mutation (the selection procedure will clone our initial genotype)
|
---|
65 | frams.ExpProperties.p_xov = 0 # no crossover (the selection procedure will clone our initial genotype)
|
---|
66 | frams.Populations[0].initial_nn_active = 1 # immediate simulation of neural network - no "waiting for stabilization" period
|
---|
67 | frams.World.wrldg = 5 # gravity=5x default, let it fall quickly
|
---|
68 |
|
---|
69 | frams.Simulator.init() # adds initial_genotype to gene pool (calls onInit() from standard.expdef)
|
---|
70 | frams.Simulator.start() # this does not actually start the simulation, just sets the "Simulator.running" status variable
|
---|
71 | step = frams.Simulator.step # cache reference to avoid repeated lookup in the loop (just for performance)
|
---|
72 | for s in range(15):
|
---|
73 | step() # first step performs selection and revives one genotype according to standard.expdef rules
|
---|
74 | creature = frams.Populations[0][0] # FramScript Creature object
|
---|
75 | mechpart0 = creature.getMechPart(0)
|
---|
76 | print('Step# = %d' % frams.Simulator.stepNumber._value(),
|
---|
77 | '\tSimulated_creatures =', frams.Populations[0].size._value(),
|
---|
78 | "\tpart0_xyz = (% .2f,% .2f,% .2f)" % (mechpart0.x._value(), mechpart0.y._value(), mechpart0.z._value()),
|
---|
79 | "\ttouch = % .3f\tgyro = % .3f" % (creature.getNeuro(0).state._value(), creature.getNeuro(1).state._value()))
|
---|
80 | frams.Simulator.stop()
|
---|
81 |
|
---|
82 | # Note that implementing a complete expdef, especially a complex one, entirely in python may be inconvenient or impractical
|
---|
83 | # because you do not have access to "event handlers" like you have in FramScript - onStep(), onBorn(), onDied(), onCollision() etc.,
|
---|
84 | # so you would have to check various conditions in python in each simulation step to achieve the same effect.
|
---|