1 | import argparse |
---|
2 | import logging |
---|
3 | import os |
---|
4 | import pickle |
---|
5 | import sys |
---|
6 | from enum import Enum |
---|
7 | |
---|
8 | import numpy as np |
---|
9 | |
---|
10 | from FramsticksLib import FramsticksLib |
---|
11 | from evolalg_steps.base.lambda_step import LambdaStep |
---|
12 | from evolalg_steps.base.step import Step |
---|
13 | from evolalg_steps.dissimilarity.archive import ArchiveDissimilarity |
---|
14 | from evolalg_steps.dissimilarity.frams_dissimilarity import FramsDissimilarity |
---|
15 | from evolalg_steps.dissimilarity.levenshtein import LevenshteinDissimilarity |
---|
16 | from evolalg_steps.experiment import Experiment |
---|
17 | from evolalg_steps.fitness.fitness_step import FitnessStep |
---|
18 | from evolalg_steps.mutation_cross.frams_cross_and_mutate import FramsCrossAndMutate |
---|
19 | from evolalg_steps.population.frams_population import FramsPopulation |
---|
20 | from evolalg_steps.repair.remove.field import FieldRemove |
---|
21 | from evolalg_steps.repair.remove.remove import Remove |
---|
22 | from evolalg_steps.selection.tournament import TournamentSelection |
---|
23 | from evolalg_steps.statistics.halloffame_stats import HallOfFameStatistics |
---|
24 | from evolalg_steps.statistics.statistics_deap import StatisticsDeap |
---|
25 | from evolalg_steps.base.union_step import UnionStep |
---|
26 | from evolalg_steps.utils.population_save import PopulationSave |
---|
27 | |
---|
28 | |
---|
29 | def ensureDir(string): |
---|
30 | if os.path.isdir(string): |
---|
31 | return string |
---|
32 | else: |
---|
33 | raise NotADirectoryError(string) |
---|
34 | |
---|
35 | |
---|
36 | class Dissim(Enum): |
---|
37 | levenshtein = "levenshtein" |
---|
38 | frams = "frams" |
---|
39 | |
---|
40 | def __str__(self): |
---|
41 | return self.name |
---|
42 | |
---|
43 | |
---|
44 | class Fitness(Enum): |
---|
45 | raw = "raw" |
---|
46 | niching = "niching" |
---|
47 | novelty = "novelty" |
---|
48 | knn_niching = "knn_niching" |
---|
49 | knn_novelty = "knn_novelty" |
---|
50 | |
---|
51 | def __str__(self): |
---|
52 | return self.name |
---|
53 | |
---|
54 | |
---|
55 | def parseArguments(): |
---|
56 | parser = argparse.ArgumentParser( |
---|
57 | description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[ |
---|
58 | 0]) |
---|
59 | parser.add_argument('-path', type=ensureDir, required=True, |
---|
60 | help='Path to the Framsticks library without trailing slash.') |
---|
61 | parser.add_argument('-opt', required=True, |
---|
62 | help='optimization criteria: vertpos, velocity, distance, vertvel, lifespan, numjoints, numparts, numneurons, numconnections (or other as long as it is provided by the .sim file and its .expdef). For multiple criteria optimization, see multicriteria.py.') |
---|
63 | parser.add_argument('-lib', required=False, help="Filename of .so or .dll with the Framsticks library") |
---|
64 | |
---|
65 | parser.add_argument('-genformat', required=False, default="1", |
---|
66 | help='Genetic format for the demo run, for example 4, 9, or B. If not given, f1 is assumed.') |
---|
67 | parser.add_argument('-sim', required=False, default="eval-allcriteria.sim", |
---|
68 | help="Name of the .sim file with all parameter values. If you want to provide more files, separate them with a semicolon ';'.") |
---|
69 | parser.add_argument('-fit', required=False, default=Fitness.raw, type=Fitness, |
---|
70 | help=' Fitness criteria, default: raw', choices=list(Fitness)) |
---|
71 | parser.add_argument('-dissim', required=False, type=Dissim, default=Dissim.frams, |
---|
72 | help='Dissimilarity measure, default: frams', choices=list(Dissim)) |
---|
73 | parser.add_argument('-knn', type=int, |
---|
74 | help="'k' value for knn-based fitness criteria (knn-niching and knn-novelty).") |
---|
75 | parser.add_argument('-popsize', type=int, default=50, help="Population size, default: 50.") |
---|
76 | parser.add_argument('-generations', type=int, default=5, help="Number of generations, default: 5.") |
---|
77 | parser.add_argument('-tournament', type=int, default=5, help="Tournament size, default: 5.") |
---|
78 | |
---|
79 | parser.add_argument('-max_numparts', type=int, default=None, help="Maximum number of Parts. Default: no limit") |
---|
80 | parser.add_argument('-max_numjoints', type=int, default=None, help="Maximum number of Joints. Default: no limit") |
---|
81 | parser.add_argument('-max_numneurons', type=int, default=None, help="Maximum number of Neurons. Default: no limit") |
---|
82 | parser.add_argument('-max_numconnections', type=int, default=None, help="Maximum number of Neural connections. Default: no limit") |
---|
83 | parser.add_argument('-max_numgenochars', type=int, default=10000, help="Maximum number of characters in genotype, to disable this option set it to -1. Default: 10 000") |
---|
84 | parser.add_argument('-hof_size', type=int, default=10, help="Number of genotypes in Hall of Fame. Default: 10.") |
---|
85 | parser.add_argument('-hof_evaluations', type=int, default=20, |
---|
86 | help="Number of final evaluations of each genotype in Hall of Fame to obtain reliable (averaged) fitness. Default: 20.") |
---|
87 | parser.add_argument('-checkpoint_path', required=False, default=None, help="Path to the checkpoint file") |
---|
88 | parser.add_argument('-checkpoint_interval', required=False, type=int, default=100, help="Checkpoint interval") |
---|
89 | parser.add_argument('-debug', dest='debug', action='store_true', help="Prints names of steps as they are executed") |
---|
90 | parser.add_argument('-archive_size', type=int, default=0, help="Size of the archive size for dissimilarity calculation") |
---|
91 | parser.set_defaults(debug=False) |
---|
92 | return parser.parse_args() |
---|
93 | |
---|
94 | |
---|
95 | def extract_fitness(ind): |
---|
96 | return ind.fitness_raw |
---|
97 | |
---|
98 | |
---|
99 | def print_population_count(pop): |
---|
100 | print("Current popsize:", len(pop)) |
---|
101 | return pop # Each step must return a population |
---|
102 | |
---|
103 | |
---|
104 | class NumPartsHigher(Remove): |
---|
105 | def __init__(self, max_number): |
---|
106 | super(NumPartsHigher, self).__init__() |
---|
107 | self.max_number = max_number |
---|
108 | |
---|
109 | def remove(self, individual): |
---|
110 | return individual.numparts > self.max_number |
---|
111 | |
---|
112 | |
---|
113 | class NumJointsHigher(Remove): |
---|
114 | def __init__(self, max_number): |
---|
115 | super(NumJointsHigher, self).__init__() |
---|
116 | self.max_number = max_number |
---|
117 | |
---|
118 | def remove(self, individual): |
---|
119 | return individual.numjoints > self.max_number |
---|
120 | |
---|
121 | |
---|
122 | class NumNeuronsHigher(Remove): |
---|
123 | def __init__(self, max_number): |
---|
124 | super(NumNeuronsHigher, self).__init__() |
---|
125 | self.max_number = max_number |
---|
126 | |
---|
127 | def remove(self, individual): |
---|
128 | return individual.numneurons > self.max_number |
---|
129 | |
---|
130 | |
---|
131 | class NumConnectionsHigher(Remove): |
---|
132 | def __init__(self, max_number): |
---|
133 | super(NumConnectionsHigher, self).__init__() |
---|
134 | self.max_number = max_number |
---|
135 | |
---|
136 | def remove(self, individual): |
---|
137 | return individual.numconnections > self.max_number |
---|
138 | |
---|
139 | class NumCharsHigher(Remove): |
---|
140 | def __init__(self, max_number): |
---|
141 | super(NumCharsHigher, self).__init__() |
---|
142 | self.max_number = max_number |
---|
143 | |
---|
144 | def remove(self, individual): |
---|
145 | return len(individual.genotype) > self.max_number |
---|
146 | |
---|
147 | class ReplaceWithHallOfFame(Step): |
---|
148 | def __init__(self, hof, *args, **kwargs): |
---|
149 | super(ReplaceWithHallOfFame, self).__init__(*args, **kwargs) |
---|
150 | self.hof = hof |
---|
151 | |
---|
152 | def call(self, population, *args, **kwargs): |
---|
153 | super(ReplaceWithHallOfFame, self).call(population) |
---|
154 | return list(self.hof.halloffame) |
---|
155 | |
---|
156 | |
---|
157 | def func_raw(ind): setattr(ind, "fitness", ind.fitness_raw) |
---|
158 | |
---|
159 | |
---|
160 | def func_novelty(ind): setattr(ind, "fitness", ind.dissim) |
---|
161 | |
---|
162 | |
---|
163 | def func_knn_novelty(ind): setattr(ind, "fitness", ind.dissim) |
---|
164 | |
---|
165 | |
---|
166 | def func_niching(ind): setattr(ind, "fitness", ind.fitness_raw * (1 + ind.dissim)) |
---|
167 | |
---|
168 | |
---|
169 | def func_knn_niching(ind): setattr(ind, "fitness", ind.fitness_raw * (1 + ind.dissim)) |
---|
170 | |
---|
171 | |
---|
172 | def load_experiment(path): |
---|
173 | with open(path, "rb") as file: |
---|
174 | experiment = pickle.load(file) |
---|
175 | print("Loaded experiment. Generation:", experiment.generation) |
---|
176 | return experiment |
---|
177 | |
---|
178 | |
---|
179 | def create_experiment(): |
---|
180 | parsed_args = parseArguments() |
---|
181 | frams_lib = FramsticksLib(parsed_args.path, parsed_args.lib, parsed_args.sim) |
---|
182 | # Steps for generating first population |
---|
183 | init_stages = [ |
---|
184 | FramsPopulation(frams_lib, parsed_args.genformat, parsed_args.popsize) |
---|
185 | ] |
---|
186 | |
---|
187 | # Selection procedure |
---|
188 | selection = TournamentSelection(parsed_args.tournament, |
---|
189 | copy=True) # 'fitness' by default, the targeted attribute can be changed, e.g. fit_attr="fitness_raw" |
---|
190 | |
---|
191 | # Procedure for generating new population. This steps will be run as long there is less than |
---|
192 | # popsize individuals in the new population |
---|
193 | new_generation_stages = [FramsCrossAndMutate(frams_lib, cross_prob=0.2, mutate_prob=0.9)] |
---|
194 | |
---|
195 | # Steps after new population is created. Executed exactly once per generation. |
---|
196 | generation_modifications = [] |
---|
197 | |
---|
198 | # ------------------------------------------------- |
---|
199 | # Fitness |
---|
200 | |
---|
201 | fitness_raw = FitnessStep(frams_lib, fields={parsed_args.opt: "fitness_raw", |
---|
202 | "numparts": "numparts", |
---|
203 | "numjoints": "numjoints", |
---|
204 | "numneurons": "numneurons", |
---|
205 | "numconnections": "numconnections"}, |
---|
206 | fields_defaults={parsed_args.opt: None, "numparts": float("inf"), |
---|
207 | "numjoints": float("inf"), "numneurons": float("inf"), |
---|
208 | "numconnections": float("inf")}, |
---|
209 | evaluation_count=1) |
---|
210 | |
---|
211 | fitness_end = FitnessStep(frams_lib, fields={parsed_args.opt: "fitness_raw"}, |
---|
212 | fields_defaults={parsed_args.opt: None}, |
---|
213 | evaluation_count=parsed_args.hof_evaluations) |
---|
214 | # Remove |
---|
215 | remove = [] |
---|
216 | remove.append(FieldRemove("fitness_raw", None)) # Remove individuals if they have default value for fitness |
---|
217 | if parsed_args.max_numparts is not None: |
---|
218 | # This could be also implemented by "LambdaRemove(lambda x: x.numparts > parsed_args.num_parts)" |
---|
219 | # But this would not serialize in checkpoint. |
---|
220 | remove.append(NumPartsHigher(parsed_args.max_numparts)) |
---|
221 | if parsed_args.max_numjoints is not None: |
---|
222 | remove.append(NumJointsHigher(parsed_args.max_numjoints)) |
---|
223 | if parsed_args.max_numneurons is not None: |
---|
224 | remove.append(NumNeuronsHigher(parsed_args.max_numneurons)) |
---|
225 | if parsed_args.max_numconnections is not None: |
---|
226 | remove.append(NumConnectionsHigher(parsed_args.max_numconnections)) |
---|
227 | if parsed_args.max_numgenochars != -1: |
---|
228 | remove.append(NumCharsHigher(parsed_args.max_numgenochars)) |
---|
229 | |
---|
230 | remove_step = UnionStep(remove) |
---|
231 | |
---|
232 | fitness_remove = UnionStep([fitness_raw, remove_step]) |
---|
233 | |
---|
234 | init_stages.append(fitness_remove) |
---|
235 | new_generation_stages.append(fitness_remove) |
---|
236 | |
---|
237 | # ------------------------------------------------- |
---|
238 | # Novelty or niching |
---|
239 | knn = parsed_args.knn |
---|
240 | if parsed_args.fit == Fitness.knn_novelty or parsed_args.fit == Fitness.knn_niching: |
---|
241 | reduction_method = "knn_mean" |
---|
242 | assert knn is not None, "'k' must be set for knn-based fitness." |
---|
243 | assert knn > 0, "'k' must be positive." |
---|
244 | assert knn < parsed_args.popsize, "'k' must be smaller than population size." |
---|
245 | else: |
---|
246 | reduction_method = "mean" |
---|
247 | assert knn is None, "'k' is irrelevant unless knn-based fitness is used." |
---|
248 | |
---|
249 | dissim = None |
---|
250 | if parsed_args.dissim == Dissim.levenshtein: |
---|
251 | dissim = LevenshteinDissimilarity(reduction=reduction_method, knn=knn, output_field="dissim") |
---|
252 | elif parsed_args.dissim == Dissim.frams: |
---|
253 | dissim = FramsDissimilarity(frams_lib, reduction=reduction_method, knn=knn, output_field="dissim") |
---|
254 | |
---|
255 | if parsed_args.fit == Fitness.raw: |
---|
256 | # Fitness is equal to finess raw |
---|
257 | raw = LambdaStep(func_raw) |
---|
258 | init_stages.append(raw) |
---|
259 | generation_modifications.append(raw) |
---|
260 | |
---|
261 | if parsed_args.fit == Fitness.niching: # TODO reduce redundancy in the four cases below: dictionary? |
---|
262 | |
---|
263 | niching = UnionStep([ |
---|
264 | ArchiveDissimilarity(parsed_args.archive_size, dissim), |
---|
265 | LambdaStep(func_niching) |
---|
266 | ]) |
---|
267 | init_stages.append(niching) |
---|
268 | generation_modifications.append(niching) |
---|
269 | |
---|
270 | if parsed_args.fit == Fitness.novelty: |
---|
271 | novelty = UnionStep([ |
---|
272 | ArchiveDissimilarity(parsed_args.archive_size, dissim), |
---|
273 | LambdaStep(func_novelty) |
---|
274 | ]) |
---|
275 | init_stages.append(novelty) |
---|
276 | generation_modifications.append(novelty) |
---|
277 | |
---|
278 | if parsed_args.fit == Fitness.knn_niching: |
---|
279 | knn_niching = UnionStep([ |
---|
280 | ArchiveDissimilarity(parsed_args.archive_size, dissim), |
---|
281 | LambdaStep(func_knn_niching) |
---|
282 | ]) |
---|
283 | init_stages.append(knn_niching) |
---|
284 | generation_modifications.append(knn_niching) |
---|
285 | |
---|
286 | if parsed_args.fit == Fitness.knn_novelty: |
---|
287 | knn_novelty = UnionStep([ |
---|
288 | ArchiveDissimilarity(parsed_args.archive_size, dissim), |
---|
289 | LambdaStep(func_knn_novelty) |
---|
290 | ]) |
---|
291 | init_stages.append(knn_novelty) |
---|
292 | generation_modifications.append(knn_novelty) |
---|
293 | |
---|
294 | # ------------------------------------------------- |
---|
295 | # Statistics |
---|
296 | hall_of_fame = HallOfFameStatistics(parsed_args.hof_size, "fitness_raw") # Wrapper for halloffamae |
---|
297 | replace_with_hof = ReplaceWithHallOfFame(hall_of_fame) |
---|
298 | statistics_deap = StatisticsDeap([ |
---|
299 | ("avg", np.mean), |
---|
300 | ("stddev", np.std), |
---|
301 | ("min", np.min), |
---|
302 | ("max", np.max) |
---|
303 | ], extract_fitness) # Wrapper for deap statistics |
---|
304 | |
---|
305 | statistics_union = UnionStep([ |
---|
306 | hall_of_fame, |
---|
307 | statistics_deap |
---|
308 | ]) # Union of two statistics steps. |
---|
309 | |
---|
310 | init_stages.append(statistics_union) |
---|
311 | generation_modifications.append(statistics_union) |
---|
312 | |
---|
313 | # ------------------------------------------------- |
---|
314 | # End stages: this will execute exactly once after all generations. |
---|
315 | end_stages = [ |
---|
316 | replace_with_hof, |
---|
317 | fitness_end, |
---|
318 | PopulationSave("halloffame.gen", provider=hall_of_fame.halloffame, fields={"genotype": "genotype", |
---|
319 | "fitness": "fitness_raw"})] |
---|
320 | # ...but custom fields can be added, e.g. "custom": "recording" |
---|
321 | |
---|
322 | # ------------------------------------------------- |
---|
323 | |
---|
324 | # Experiment creation |
---|
325 | |
---|
326 | experiment = Experiment(init_population=init_stages, |
---|
327 | selection=selection, |
---|
328 | new_generation_steps=new_generation_stages, |
---|
329 | generation_modification=generation_modifications, |
---|
330 | end_steps=end_stages, |
---|
331 | population_size=parsed_args.popsize, |
---|
332 | checkpoint_path=parsed_args.checkpoint_path, |
---|
333 | checkpoint_interval=parsed_args.checkpoint_interval |
---|
334 | ) |
---|
335 | return experiment |
---|
336 | |
---|
337 | |
---|
338 | def main(): |
---|
339 | print("Running experiment with", sys.argv) |
---|
340 | parsed_args = parseArguments() |
---|
341 | if parsed_args.debug: |
---|
342 | logging.basicConfig(level=logging.DEBUG) |
---|
343 | |
---|
344 | if parsed_args.checkpoint_path is not None and os.path.exists(parsed_args.checkpoint_path): |
---|
345 | experiment = load_experiment(parsed_args.checkpoint_path) |
---|
346 | else: |
---|
347 | experiment = create_experiment() |
---|
348 | experiment.init() # init is mandatory |
---|
349 | |
---|
350 | experiment.run(parsed_args.generations) |
---|
351 | |
---|
352 | # Next call for experiment.run(10) will do nothing. Parameter 10 specifies how many generations should be |
---|
353 | # in one experiment. Previous call generated 10 generations. |
---|
354 | # Example 1: |
---|
355 | # experiment.init() |
---|
356 | # experiment.run(10) |
---|
357 | # experiment.run(12) |
---|
358 | # #This will run for total of 12 generations |
---|
359 | # |
---|
360 | # Example 2 |
---|
361 | # experiment.init() |
---|
362 | # experiment.run(10) |
---|
363 | # experiment.init() |
---|
364 | # experiment.run(10) |
---|
365 | # # All work produced by first run will be "destroyed" by second init(). |
---|
366 | |
---|
367 | |
---|
368 | if __name__ == '__main__': |
---|
369 | main() |
---|