| 1 | import argparse |
|---|
| 2 | import logging |
|---|
| 3 | import os |
|---|
| 4 | import pickle |
|---|
| 5 | import sys |
|---|
| 6 | from enum import Enum |
|---|
| 7 | |
|---|
| 8 | import numpy as np |
|---|
| 9 | |
|---|
| 10 | from FramsticksLib import FramsticksLib |
|---|
| 11 | from evolalg_steps.base.lambda_step import LambdaStep |
|---|
| 12 | from evolalg_steps.base.step import Step |
|---|
| 13 | from evolalg_steps.dissimilarity.archive import ArchiveDissimilarity |
|---|
| 14 | from evolalg_steps.dissimilarity.frams_dissimilarity import FramsDissimilarity |
|---|
| 15 | from evolalg_steps.dissimilarity.levenshtein import LevenshteinDissimilarity |
|---|
| 16 | from evolalg_steps.experiment import Experiment |
|---|
| 17 | from evolalg_steps.fitness.fitness_step import FitnessStep |
|---|
| 18 | from evolalg_steps.mutation_cross.frams_cross_and_mutate import FramsCrossAndMutate |
|---|
| 19 | from evolalg_steps.population.frams_population import FramsPopulation |
|---|
| 20 | from evolalg_steps.repair.remove.field import FieldRemove |
|---|
| 21 | from evolalg_steps.repair.remove.remove import Remove |
|---|
| 22 | from evolalg_steps.selection.tournament import TournamentSelection |
|---|
| 23 | from evolalg_steps.statistics.halloffame_stats import HallOfFameStatistics |
|---|
| 24 | from evolalg_steps.statistics.statistics_deap import StatisticsDeap |
|---|
| 25 | from evolalg_steps.base.union_step import UnionStep |
|---|
| 26 | from evolalg_steps.utils.population_save import PopulationSave |
|---|
| 27 | |
|---|
| 28 | |
|---|
| 29 | def ensureDir(string): |
|---|
| 30 | if os.path.isdir(string): |
|---|
| 31 | return string |
|---|
| 32 | else: |
|---|
| 33 | raise NotADirectoryError(string) |
|---|
| 34 | |
|---|
| 35 | |
|---|
| 36 | class Dissim(Enum): |
|---|
| 37 | levenshtein = "levenshtein" |
|---|
| 38 | frams = "frams" |
|---|
| 39 | |
|---|
| 40 | def __str__(self): |
|---|
| 41 | return self.name |
|---|
| 42 | |
|---|
| 43 | |
|---|
| 44 | class Fitness(Enum): |
|---|
| 45 | raw = "raw" |
|---|
| 46 | niching = "niching" |
|---|
| 47 | novelty = "novelty" |
|---|
| 48 | knn_niching = "knn_niching" |
|---|
| 49 | knn_novelty = "knn_novelty" |
|---|
| 50 | |
|---|
| 51 | def __str__(self): |
|---|
| 52 | return self.name |
|---|
| 53 | |
|---|
| 54 | |
|---|
| 55 | def parseArguments(): |
|---|
| 56 | parser = argparse.ArgumentParser( |
|---|
| 57 | description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[ |
|---|
| 58 | 0]) |
|---|
| 59 | parser.add_argument('-path', type=ensureDir, required=True, |
|---|
| 60 | help='Path to the Framsticks library without trailing slash.') |
|---|
| 61 | parser.add_argument('-opt', required=True, |
|---|
| 62 | help='optimization criteria: vertpos, velocity, distance, vertvel, lifespan, numjoints, numparts, numneurons, numconnections (or other as long as it is provided by the .sim file and its .expdef). For multiple criteria optimization, see multicriteria.py.') |
|---|
| 63 | parser.add_argument('-lib', required=False, help="Filename of .so or .dll with the Framsticks library") |
|---|
| 64 | |
|---|
| 65 | parser.add_argument('-genformat', required=False, default="1", |
|---|
| 66 | help='Genetic format for the demo run, for example 4, 9, or B. If not given, f1 is assumed.') |
|---|
| 67 | parser.add_argument('-sim', required=False, default="eval-allcriteria.sim", |
|---|
| 68 | help="Name of the .sim file with all parameter values. If you want to provide more files, separate them with a semicolon ';'.") |
|---|
| 69 | parser.add_argument('-fit', required=False, default=Fitness.raw, type=Fitness, |
|---|
| 70 | help=' Fitness criteria, default: raw', choices=list(Fitness)) |
|---|
| 71 | parser.add_argument('-dissim', required=False, type=Dissim, default=Dissim.frams, |
|---|
| 72 | help='Dissimilarity measure, default: frams', choices=list(Dissim)) |
|---|
| 73 | parser.add_argument('-knn', type=int, |
|---|
| 74 | help="'k' value for knn-based fitness criteria (knn-niching and knn-novelty).") |
|---|
| 75 | parser.add_argument('-popsize', type=int, default=50, help="Population size, default: 50.") |
|---|
| 76 | parser.add_argument('-generations', type=int, default=5, help="Number of generations, default: 5.") |
|---|
| 77 | parser.add_argument('-tournament', type=int, default=5, help="Tournament size, default: 5.") |
|---|
| 78 | |
|---|
| 79 | parser.add_argument('-max_numparts', type=int, default=None, help="Maximum number of Parts. Default: no limit") |
|---|
| 80 | parser.add_argument('-max_numjoints', type=int, default=None, help="Maximum number of Joints. Default: no limit") |
|---|
| 81 | parser.add_argument('-max_numneurons', type=int, default=None, help="Maximum number of Neurons. Default: no limit") |
|---|
| 82 | parser.add_argument('-max_numconnections', type=int, default=None, help="Maximum number of Neural connections. Default: no limit") |
|---|
| 83 | parser.add_argument('-max_numgenochars', type=int, default=10000, help="Maximum number of characters in genotype, to disable this option set it to -1. Default: 10 000") |
|---|
| 84 | parser.add_argument('-hof_size', type=int, default=10, help="Number of genotypes in Hall of Fame. Default: 10.") |
|---|
| 85 | parser.add_argument('-hof_evaluations', type=int, default=20, |
|---|
| 86 | help="Number of final evaluations of each genotype in Hall of Fame to obtain reliable (averaged) fitness. Default: 20.") |
|---|
| 87 | parser.add_argument('-checkpoint_path', required=False, default=None, help="Path to the checkpoint file") |
|---|
| 88 | parser.add_argument('-checkpoint_interval', required=False, type=int, default=100, help="Checkpoint interval") |
|---|
| 89 | parser.add_argument('-debug', dest='debug', action='store_true', help="Prints names of steps as they are executed") |
|---|
| 90 | parser.add_argument('-archive_size', type=int, default=0, help="Size of the archive size for dissimilarity calculation") |
|---|
| 91 | parser.set_defaults(debug=False) |
|---|
| 92 | return parser.parse_args() |
|---|
| 93 | |
|---|
| 94 | |
|---|
| 95 | def extract_fitness(ind): |
|---|
| 96 | return ind.fitness_raw |
|---|
| 97 | |
|---|
| 98 | |
|---|
| 99 | def print_population_count(pop): |
|---|
| 100 | print("Current popsize:", len(pop)) |
|---|
| 101 | return pop # Each step must return a population |
|---|
| 102 | |
|---|
| 103 | |
|---|
| 104 | class NumPartsHigher(Remove): |
|---|
| 105 | def __init__(self, max_number): |
|---|
| 106 | super(NumPartsHigher, self).__init__() |
|---|
| 107 | self.max_number = max_number |
|---|
| 108 | |
|---|
| 109 | def remove(self, individual): |
|---|
| 110 | return individual.numparts > self.max_number |
|---|
| 111 | |
|---|
| 112 | |
|---|
| 113 | class NumJointsHigher(Remove): |
|---|
| 114 | def __init__(self, max_number): |
|---|
| 115 | super(NumJointsHigher, self).__init__() |
|---|
| 116 | self.max_number = max_number |
|---|
| 117 | |
|---|
| 118 | def remove(self, individual): |
|---|
| 119 | return individual.numjoints > self.max_number |
|---|
| 120 | |
|---|
| 121 | |
|---|
| 122 | class NumNeuronsHigher(Remove): |
|---|
| 123 | def __init__(self, max_number): |
|---|
| 124 | super(NumNeuronsHigher, self).__init__() |
|---|
| 125 | self.max_number = max_number |
|---|
| 126 | |
|---|
| 127 | def remove(self, individual): |
|---|
| 128 | return individual.numneurons > self.max_number |
|---|
| 129 | |
|---|
| 130 | |
|---|
| 131 | class NumConnectionsHigher(Remove): |
|---|
| 132 | def __init__(self, max_number): |
|---|
| 133 | super(NumConnectionsHigher, self).__init__() |
|---|
| 134 | self.max_number = max_number |
|---|
| 135 | |
|---|
| 136 | def remove(self, individual): |
|---|
| 137 | return individual.numconnections > self.max_number |
|---|
| 138 | |
|---|
| 139 | class NumCharsHigher(Remove): |
|---|
| 140 | def __init__(self, max_number): |
|---|
| 141 | super(NumCharsHigher, self).__init__() |
|---|
| 142 | self.max_number = max_number |
|---|
| 143 | |
|---|
| 144 | def remove(self, individual): |
|---|
| 145 | return len(individual.genotype) > self.max_number |
|---|
| 146 | |
|---|
| 147 | class ReplaceWithHallOfFame(Step): |
|---|
| 148 | def __init__(self, hof, *args, **kwargs): |
|---|
| 149 | super(ReplaceWithHallOfFame, self).__init__(*args, **kwargs) |
|---|
| 150 | self.hof = hof |
|---|
| 151 | |
|---|
| 152 | def call(self, population, *args, **kwargs): |
|---|
| 153 | super(ReplaceWithHallOfFame, self).call(population) |
|---|
| 154 | return list(self.hof.halloffame) |
|---|
| 155 | |
|---|
| 156 | |
|---|
| 157 | def func_raw(ind): setattr(ind, "fitness", ind.fitness_raw) |
|---|
| 158 | |
|---|
| 159 | |
|---|
| 160 | def func_novelty(ind): setattr(ind, "fitness", ind.dissim) |
|---|
| 161 | |
|---|
| 162 | |
|---|
| 163 | def func_knn_novelty(ind): setattr(ind, "fitness", ind.dissim) |
|---|
| 164 | |
|---|
| 165 | |
|---|
| 166 | def func_niching(ind): setattr(ind, "fitness", ind.fitness_raw * (1 + ind.dissim)) |
|---|
| 167 | |
|---|
| 168 | |
|---|
| 169 | def func_knn_niching(ind): setattr(ind, "fitness", ind.fitness_raw * (1 + ind.dissim)) |
|---|
| 170 | |
|---|
| 171 | |
|---|
| 172 | def load_experiment(path): |
|---|
| 173 | with open(path, "rb") as file: |
|---|
| 174 | experiment = pickle.load(file) |
|---|
| 175 | print("Loaded experiment. Generation:", experiment.generation) |
|---|
| 176 | return experiment |
|---|
| 177 | |
|---|
| 178 | |
|---|
| 179 | def create_experiment(): |
|---|
| 180 | parsed_args = parseArguments() |
|---|
| 181 | frams_lib = FramsticksLib(parsed_args.path, parsed_args.lib, parsed_args.sim) |
|---|
| 182 | # Steps for generating first population |
|---|
| 183 | init_stages = [ |
|---|
| 184 | FramsPopulation(frams_lib, parsed_args.genformat, parsed_args.popsize) |
|---|
| 185 | ] |
|---|
| 186 | |
|---|
| 187 | # Selection procedure |
|---|
| 188 | selection = TournamentSelection(parsed_args.tournament, |
|---|
| 189 | copy=True) # 'fitness' by default, the targeted attribute can be changed, e.g. fit_attr="fitness_raw" |
|---|
| 190 | |
|---|
| 191 | # Procedure for generating new population. This steps will be run as long there is less than |
|---|
| 192 | # popsize individuals in the new population |
|---|
| 193 | new_generation_stages = [FramsCrossAndMutate(frams_lib, cross_prob=0.2, mutate_prob=0.9)] |
|---|
| 194 | |
|---|
| 195 | # Steps after new population is created. Executed exactly once per generation. |
|---|
| 196 | generation_modifications = [] |
|---|
| 197 | |
|---|
| 198 | # ------------------------------------------------- |
|---|
| 199 | # Fitness |
|---|
| 200 | |
|---|
| 201 | fitness_raw = FitnessStep(frams_lib, fields={parsed_args.opt: "fitness_raw", |
|---|
| 202 | "numparts": "numparts", |
|---|
| 203 | "numjoints": "numjoints", |
|---|
| 204 | "numneurons": "numneurons", |
|---|
| 205 | "numconnections": "numconnections"}, |
|---|
| 206 | fields_defaults={parsed_args.opt: None, "numparts": float("inf"), |
|---|
| 207 | "numjoints": float("inf"), "numneurons": float("inf"), |
|---|
| 208 | "numconnections": float("inf")}, |
|---|
| 209 | evaluation_count=1) |
|---|
| 210 | |
|---|
| 211 | fitness_end = FitnessStep(frams_lib, fields={parsed_args.opt: "fitness_raw"}, |
|---|
| 212 | fields_defaults={parsed_args.opt: None}, |
|---|
| 213 | evaluation_count=parsed_args.hof_evaluations) |
|---|
| 214 | # Remove |
|---|
| 215 | remove = [] |
|---|
| 216 | remove.append(FieldRemove("fitness_raw", None)) # Remove individuals if they have default value for fitness |
|---|
| 217 | if parsed_args.max_numparts is not None: |
|---|
| 218 | # This could be also implemented by "LambdaRemove(lambda x: x.numparts > parsed_args.num_parts)" |
|---|
| 219 | # But this would not serialize in checkpoint. |
|---|
| 220 | remove.append(NumPartsHigher(parsed_args.max_numparts)) |
|---|
| 221 | if parsed_args.max_numjoints is not None: |
|---|
| 222 | remove.append(NumJointsHigher(parsed_args.max_numjoints)) |
|---|
| 223 | if parsed_args.max_numneurons is not None: |
|---|
| 224 | remove.append(NumNeuronsHigher(parsed_args.max_numneurons)) |
|---|
| 225 | if parsed_args.max_numconnections is not None: |
|---|
| 226 | remove.append(NumConnectionsHigher(parsed_args.max_numconnections)) |
|---|
| 227 | if parsed_args.max_numgenochars != -1: |
|---|
| 228 | remove.append(NumCharsHigher(parsed_args.max_numgenochars)) |
|---|
| 229 | |
|---|
| 230 | remove_step = UnionStep(remove) |
|---|
| 231 | |
|---|
| 232 | fitness_remove = UnionStep([fitness_raw, remove_step]) |
|---|
| 233 | |
|---|
| 234 | init_stages.append(fitness_remove) |
|---|
| 235 | new_generation_stages.append(fitness_remove) |
|---|
| 236 | |
|---|
| 237 | # ------------------------------------------------- |
|---|
| 238 | # Novelty or niching |
|---|
| 239 | knn = parsed_args.knn |
|---|
| 240 | if parsed_args.fit == Fitness.knn_novelty or parsed_args.fit == Fitness.knn_niching: |
|---|
| 241 | reduction_method = "knn_mean" |
|---|
| 242 | assert knn is not None, "'k' must be set for knn-based fitness." |
|---|
| 243 | assert knn > 0, "'k' must be positive." |
|---|
| 244 | assert knn < parsed_args.popsize, "'k' must be smaller than population size." |
|---|
| 245 | else: |
|---|
| 246 | reduction_method = "mean" |
|---|
| 247 | assert knn is None, "'k' is irrelevant unless knn-based fitness is used." |
|---|
| 248 | |
|---|
| 249 | dissim = None |
|---|
| 250 | if parsed_args.dissim == Dissim.levenshtein: |
|---|
| 251 | dissim = LevenshteinDissimilarity(reduction=reduction_method, knn=knn, output_field="dissim") |
|---|
| 252 | elif parsed_args.dissim == Dissim.frams: |
|---|
| 253 | dissim = FramsDissimilarity(frams_lib, reduction=reduction_method, knn=knn, output_field="dissim") |
|---|
| 254 | |
|---|
| 255 | if parsed_args.fit == Fitness.raw: |
|---|
| 256 | # Fitness is equal to finess raw |
|---|
| 257 | raw = LambdaStep(func_raw) |
|---|
| 258 | init_stages.append(raw) |
|---|
| 259 | generation_modifications.append(raw) |
|---|
| 260 | |
|---|
| 261 | if parsed_args.fit == Fitness.niching: # TODO reduce redundancy in the four cases below: dictionary? |
|---|
| 262 | |
|---|
| 263 | niching = UnionStep([ |
|---|
| 264 | ArchiveDissimilarity(parsed_args.archive_size, dissim), |
|---|
| 265 | LambdaStep(func_niching) |
|---|
| 266 | ]) |
|---|
| 267 | init_stages.append(niching) |
|---|
| 268 | generation_modifications.append(niching) |
|---|
| 269 | |
|---|
| 270 | if parsed_args.fit == Fitness.novelty: |
|---|
| 271 | novelty = UnionStep([ |
|---|
| 272 | ArchiveDissimilarity(parsed_args.archive_size, dissim), |
|---|
| 273 | LambdaStep(func_novelty) |
|---|
| 274 | ]) |
|---|
| 275 | init_stages.append(novelty) |
|---|
| 276 | generation_modifications.append(novelty) |
|---|
| 277 | |
|---|
| 278 | if parsed_args.fit == Fitness.knn_niching: |
|---|
| 279 | knn_niching = UnionStep([ |
|---|
| 280 | ArchiveDissimilarity(parsed_args.archive_size, dissim), |
|---|
| 281 | LambdaStep(func_knn_niching) |
|---|
| 282 | ]) |
|---|
| 283 | init_stages.append(knn_niching) |
|---|
| 284 | generation_modifications.append(knn_niching) |
|---|
| 285 | |
|---|
| 286 | if parsed_args.fit == Fitness.knn_novelty: |
|---|
| 287 | knn_novelty = UnionStep([ |
|---|
| 288 | ArchiveDissimilarity(parsed_args.archive_size, dissim), |
|---|
| 289 | LambdaStep(func_knn_novelty) |
|---|
| 290 | ]) |
|---|
| 291 | init_stages.append(knn_novelty) |
|---|
| 292 | generation_modifications.append(knn_novelty) |
|---|
| 293 | |
|---|
| 294 | # ------------------------------------------------- |
|---|
| 295 | # Statistics |
|---|
| 296 | hall_of_fame = HallOfFameStatistics(parsed_args.hof_size, "fitness_raw") # Wrapper for halloffamae |
|---|
| 297 | replace_with_hof = ReplaceWithHallOfFame(hall_of_fame) |
|---|
| 298 | statistics_deap = StatisticsDeap([ |
|---|
| 299 | ("avg", np.mean), |
|---|
| 300 | ("stddev", np.std), |
|---|
| 301 | ("min", np.min), |
|---|
| 302 | ("max", np.max) |
|---|
| 303 | ], extract_fitness) # Wrapper for deap statistics |
|---|
| 304 | |
|---|
| 305 | statistics_union = UnionStep([ |
|---|
| 306 | hall_of_fame, |
|---|
| 307 | statistics_deap |
|---|
| 308 | ]) # Union of two statistics steps. |
|---|
| 309 | |
|---|
| 310 | init_stages.append(statistics_union) |
|---|
| 311 | generation_modifications.append(statistics_union) |
|---|
| 312 | |
|---|
| 313 | # ------------------------------------------------- |
|---|
| 314 | # End stages: this will execute exactly once after all generations. |
|---|
| 315 | end_stages = [ |
|---|
| 316 | replace_with_hof, |
|---|
| 317 | fitness_end, |
|---|
| 318 | PopulationSave("halloffame.gen", provider=hall_of_fame.halloffame, fields={"genotype": "genotype", |
|---|
| 319 | "fitness": "fitness_raw"})] |
|---|
| 320 | # ...but custom fields can be added, e.g. "custom": "recording" |
|---|
| 321 | |
|---|
| 322 | # ------------------------------------------------- |
|---|
| 323 | |
|---|
| 324 | # Experiment creation |
|---|
| 325 | |
|---|
| 326 | experiment = Experiment(init_population=init_stages, |
|---|
| 327 | selection=selection, |
|---|
| 328 | new_generation_steps=new_generation_stages, |
|---|
| 329 | generation_modification=generation_modifications, |
|---|
| 330 | end_steps=end_stages, |
|---|
| 331 | population_size=parsed_args.popsize, |
|---|
| 332 | checkpoint_path=parsed_args.checkpoint_path, |
|---|
| 333 | checkpoint_interval=parsed_args.checkpoint_interval |
|---|
| 334 | ) |
|---|
| 335 | return experiment |
|---|
| 336 | |
|---|
| 337 | |
|---|
| 338 | def main(): |
|---|
| 339 | print("Running experiment with", sys.argv) |
|---|
| 340 | parsed_args = parseArguments() |
|---|
| 341 | if parsed_args.debug: |
|---|
| 342 | logging.basicConfig(level=logging.DEBUG) |
|---|
| 343 | |
|---|
| 344 | if parsed_args.checkpoint_path is not None and os.path.exists(parsed_args.checkpoint_path): |
|---|
| 345 | experiment = load_experiment(parsed_args.checkpoint_path) |
|---|
| 346 | else: |
|---|
| 347 | experiment = create_experiment() |
|---|
| 348 | experiment.init() # init is mandatory |
|---|
| 349 | |
|---|
| 350 | experiment.run(parsed_args.generations) |
|---|
| 351 | |
|---|
| 352 | # Next call for experiment.run(10) will do nothing. Parameter 10 specifies how many generations should be |
|---|
| 353 | # in one experiment. Previous call generated 10 generations. |
|---|
| 354 | # Example 1: |
|---|
| 355 | # experiment.init() |
|---|
| 356 | # experiment.run(10) |
|---|
| 357 | # experiment.run(12) |
|---|
| 358 | # #This will run for total of 12 generations |
|---|
| 359 | # |
|---|
| 360 | # Example 2 |
|---|
| 361 | # experiment.init() |
|---|
| 362 | # experiment.run(10) |
|---|
| 363 | # experiment.init() |
|---|
| 364 | # experiment.run(10) |
|---|
| 365 | # # All work produced by first run will be "destroyed" by second init(). |
|---|
| 366 | |
|---|
| 367 | |
|---|
| 368 | if __name__ == '__main__': |
|---|
| 369 | main() |
|---|