[1113] | 1 | import argparse |
---|
[1139] | 2 | import logging |
---|
[1113] | 3 | import os |
---|
[1128] | 4 | import pickle |
---|
[1113] | 5 | import sys |
---|
| 6 | from enum import Enum |
---|
| 7 | |
---|
| 8 | import numpy as np |
---|
| 9 | |
---|
| 10 | from FramsticksLib import FramsticksLib |
---|
[1185] | 11 | from evolalg_steps.base.lambda_step import LambdaStep |
---|
| 12 | from evolalg_steps.base.step import Step |
---|
| 13 | from evolalg_steps.dissimilarity.archive import ArchiveDissimilarity |
---|
| 14 | from evolalg_steps.dissimilarity.frams_dissimilarity import FramsDissimilarity |
---|
| 15 | from evolalg_steps.dissimilarity.levenshtein import LevenshteinDissimilarity |
---|
| 16 | from evolalg_steps.experiment import Experiment |
---|
| 17 | from evolalg_steps.fitness.fitness_step import FitnessStep |
---|
| 18 | from evolalg_steps.mutation_cross.frams_cross_and_mutate import FramsCrossAndMutate |
---|
| 19 | from evolalg_steps.population.frams_population import FramsPopulation |
---|
| 20 | from evolalg_steps.repair.remove.field import FieldRemove |
---|
| 21 | from evolalg_steps.repair.remove.remove import Remove |
---|
| 22 | from evolalg_steps.selection.tournament import TournamentSelection |
---|
| 23 | from evolalg_steps.statistics.halloffame_stats import HallOfFameStatistics |
---|
| 24 | from evolalg_steps.statistics.statistics_deap import StatisticsDeap |
---|
| 25 | from evolalg_steps.base.union_step import UnionStep |
---|
| 26 | from evolalg_steps.utils.population_save import PopulationSave |
---|
[1113] | 27 | |
---|
| 28 | |
---|
| 29 | def ensureDir(string): |
---|
| 30 | if os.path.isdir(string): |
---|
| 31 | return string |
---|
| 32 | else: |
---|
| 33 | raise NotADirectoryError(string) |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | class Dissim(Enum): |
---|
| 37 | levenshtein = "levenshtein" |
---|
| 38 | frams = "frams" |
---|
| 39 | |
---|
| 40 | def __str__(self): |
---|
| 41 | return self.name |
---|
| 42 | |
---|
| 43 | |
---|
| 44 | class Fitness(Enum): |
---|
| 45 | raw = "raw" |
---|
| 46 | niching = "niching" |
---|
| 47 | novelty = "novelty" |
---|
[1145] | 48 | knn_niching = "knn_niching" |
---|
| 49 | knn_novelty = "knn_novelty" |
---|
[1113] | 50 | |
---|
| 51 | def __str__(self): |
---|
| 52 | return self.name |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | def parseArguments(): |
---|
| 56 | parser = argparse.ArgumentParser( |
---|
| 57 | description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[ |
---|
| 58 | 0]) |
---|
[1182] | 59 | parser.add_argument('-path', type=ensureDir, required=True, |
---|
| 60 | help='Path to the Framsticks library without trailing slash.') |
---|
[1113] | 61 | parser.add_argument('-opt', required=True, |
---|
[1145] | 62 | help='optimization criteria: vertpos, velocity, distance, vertvel, lifespan, numjoints, numparts, numneurons, numconnections (or other as long as it is provided by the .sim file and its .expdef). For multiple criteria optimization, see multicriteria.py.') |
---|
[1132] | 63 | parser.add_argument('-lib', required=False, help="Filename of .so or .dll with the Framsticks library") |
---|
[1139] | 64 | |
---|
[1113] | 65 | parser.add_argument('-genformat', required=False, default="1", |
---|
| 66 | help='Genetic format for the demo run, for example 4, 9, or B. If not given, f1 is assumed.') |
---|
[1182] | 67 | parser.add_argument('-sim', required=False, default="eval-allcriteria.sim", |
---|
| 68 | help="Name of the .sim file with all parameter values. If you want to provide more files, separate them with a semicolon ';'.") |
---|
[1139] | 69 | parser.add_argument('-fit', required=False, default=Fitness.raw, type=Fitness, |
---|
| 70 | help=' Fitness criteria, default: raw', choices=list(Fitness)) |
---|
[1113] | 71 | parser.add_argument('-dissim', required=False, type=Dissim, default=Dissim.frams, |
---|
[1139] | 72 | help='Dissimilarity measure, default: frams', choices=list(Dissim)) |
---|
[1182] | 73 | parser.add_argument('-knn', type=int, |
---|
| 74 | help="'k' value for knn-based fitness criteria (knn-niching and knn-novelty).") |
---|
[1139] | 75 | parser.add_argument('-popsize', type=int, default=50, help="Population size, default: 50.") |
---|
| 76 | parser.add_argument('-generations', type=int, default=5, help="Number of generations, default: 5.") |
---|
| 77 | parser.add_argument('-tournament', type=int, default=5, help="Tournament size, default: 5.") |
---|
[1138] | 78 | |
---|
| 79 | parser.add_argument('-max_numparts', type=int, default=None, help="Maximum number of Parts. Default: no limit") |
---|
| 80 | parser.add_argument('-max_numjoints', type=int, default=None, help="Maximum number of Joints. Default: no limit") |
---|
| 81 | parser.add_argument('-max_numneurons', type=int, default=None, help="Maximum number of Neurons. Default: no limit") |
---|
| 82 | parser.add_argument('-max_numconnections', type=int, default=None, help="Maximum number of Neural connections. Default: no limit") |
---|
[1182] | 83 | parser.add_argument('-max_numgenochars', type=int, default=10000, help="Maximum number of characters in genotype, to disable this option set it to -1. Default: 10 000") |
---|
[1140] | 84 | parser.add_argument('-hof_size', type=int, default=10, help="Number of genotypes in Hall of Fame. Default: 10.") |
---|
[1182] | 85 | parser.add_argument('-hof_evaluations', type=int, default=20, |
---|
| 86 | help="Number of final evaluations of each genotype in Hall of Fame to obtain reliable (averaged) fitness. Default: 20.") |
---|
[1128] | 87 | parser.add_argument('-checkpoint_path', required=False, default=None, help="Path to the checkpoint file") |
---|
[1113] | 88 | parser.add_argument('-checkpoint_interval', required=False, type=int, default=100, help="Checkpoint interval") |
---|
[1145] | 89 | parser.add_argument('-debug', dest='debug', action='store_true', help="Prints names of steps as they are executed") |
---|
[1182] | 90 | parser.add_argument('-archive_size', type=int, default=0, help="Size of the archive size for dissimilarity calculation") |
---|
[1139] | 91 | parser.set_defaults(debug=False) |
---|
[1113] | 92 | return parser.parse_args() |
---|
| 93 | |
---|
| 94 | |
---|
| 95 | def extract_fitness(ind): |
---|
| 96 | return ind.fitness_raw |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | def print_population_count(pop): |
---|
[1136] | 100 | print("Current popsize:", len(pop)) |
---|
[1113] | 101 | return pop # Each step must return a population |
---|
| 102 | |
---|
| 103 | |
---|
[1138] | 104 | class NumPartsHigher(Remove): |
---|
| 105 | def __init__(self, max_number): |
---|
| 106 | super(NumPartsHigher, self).__init__() |
---|
| 107 | self.max_number = max_number |
---|
[1113] | 108 | |
---|
| 109 | def remove(self, individual): |
---|
[1138] | 110 | return individual.numparts > self.max_number |
---|
[1113] | 111 | |
---|
| 112 | |
---|
[1138] | 113 | class NumJointsHigher(Remove): |
---|
| 114 | def __init__(self, max_number): |
---|
| 115 | super(NumJointsHigher, self).__init__() |
---|
| 116 | self.max_number = max_number |
---|
| 117 | |
---|
| 118 | def remove(self, individual): |
---|
| 119 | return individual.numjoints > self.max_number |
---|
| 120 | |
---|
| 121 | |
---|
| 122 | class NumNeuronsHigher(Remove): |
---|
| 123 | def __init__(self, max_number): |
---|
| 124 | super(NumNeuronsHigher, self).__init__() |
---|
| 125 | self.max_number = max_number |
---|
| 126 | |
---|
| 127 | def remove(self, individual): |
---|
| 128 | return individual.numneurons > self.max_number |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | class NumConnectionsHigher(Remove): |
---|
| 132 | def __init__(self, max_number): |
---|
| 133 | super(NumConnectionsHigher, self).__init__() |
---|
| 134 | self.max_number = max_number |
---|
| 135 | |
---|
| 136 | def remove(self, individual): |
---|
| 137 | return individual.numconnections > self.max_number |
---|
| 138 | |
---|
[1182] | 139 | class NumCharsHigher(Remove): |
---|
| 140 | def __init__(self, max_number): |
---|
| 141 | super(NumCharsHigher, self).__init__() |
---|
| 142 | self.max_number = max_number |
---|
[1145] | 143 | |
---|
[1182] | 144 | def remove(self, individual): |
---|
| 145 | return len(individual.genotype) > self.max_number |
---|
| 146 | |
---|
[1139] | 147 | class ReplaceWithHallOfFame(Step): |
---|
| 148 | def __init__(self, hof, *args, **kwargs): |
---|
| 149 | super(ReplaceWithHallOfFame, self).__init__(*args, **kwargs) |
---|
| 150 | self.hof = hof |
---|
[1182] | 151 | |
---|
[1139] | 152 | def call(self, population, *args, **kwargs): |
---|
| 153 | super(ReplaceWithHallOfFame, self).call(population) |
---|
| 154 | return list(self.hof.halloffame) |
---|
[1138] | 155 | |
---|
[1145] | 156 | |
---|
[1113] | 157 | def func_raw(ind): setattr(ind, "fitness", ind.fitness_raw) |
---|
| 158 | |
---|
| 159 | |
---|
| 160 | def func_novelty(ind): setattr(ind, "fitness", ind.dissim) |
---|
| 161 | |
---|
| 162 | |
---|
[1145] | 163 | def func_knn_novelty(ind): setattr(ind, "fitness", ind.dissim) |
---|
| 164 | |
---|
| 165 | |
---|
[1146] | 166 | def func_niching(ind): setattr(ind, "fitness", ind.fitness_raw * (1 + ind.dissim)) |
---|
| 167 | |
---|
| 168 | |
---|
[1145] | 169 | def func_knn_niching(ind): setattr(ind, "fitness", ind.fitness_raw * (1 + ind.dissim)) |
---|
| 170 | |
---|
| 171 | |
---|
[1128] | 172 | def load_experiment(path): |
---|
| 173 | with open(path, "rb") as file: |
---|
| 174 | experiment = pickle.load(file) |
---|
| 175 | print("Loaded experiment. Generation:", experiment.generation) |
---|
| 176 | return experiment |
---|
| 177 | |
---|
| 178 | |
---|
| 179 | def create_experiment(): |
---|
[1113] | 180 | parsed_args = parseArguments() |
---|
[1205] | 181 | frams_lib = FramsticksLib(parsed_args.path, parsed_args.lib, parsed_args.sim) |
---|
[1113] | 182 | # Steps for generating first population |
---|
[1128] | 183 | init_stages = [ |
---|
[1138] | 184 | FramsPopulation(frams_lib, parsed_args.genformat, parsed_args.popsize) |
---|
[1128] | 185 | ] |
---|
[1113] | 186 | |
---|
| 187 | # Selection procedure |
---|
[1129] | 188 | selection = TournamentSelection(parsed_args.tournament, |
---|
[1128] | 189 | copy=True) # 'fitness' by default, the targeted attribute can be changed, e.g. fit_attr="fitness_raw" |
---|
[1113] | 190 | |
---|
| 191 | # Procedure for generating new population. This steps will be run as long there is less than |
---|
| 192 | # popsize individuals in the new population |
---|
[1138] | 193 | new_generation_stages = [FramsCrossAndMutate(frams_lib, cross_prob=0.2, mutate_prob=0.9)] |
---|
[1113] | 194 | |
---|
[1146] | 195 | # Steps after new population is created. Executed exactly once per generation. |
---|
[1113] | 196 | generation_modifications = [] |
---|
| 197 | |
---|
| 198 | # ------------------------------------------------- |
---|
| 199 | # Fitness |
---|
| 200 | |
---|
[1138] | 201 | fitness_raw = FitnessStep(frams_lib, fields={parsed_args.opt: "fitness_raw", |
---|
[1182] | 202 | "numparts": "numparts", |
---|
| 203 | "numjoints": "numjoints", |
---|
| 204 | "numneurons": "numneurons", |
---|
| 205 | "numconnections": "numconnections"}, |
---|
[1138] | 206 | fields_defaults={parsed_args.opt: None, "numparts": float("inf"), |
---|
| 207 | "numjoints": float("inf"), "numneurons": float("inf"), |
---|
| 208 | "numconnections": float("inf")}, |
---|
[1113] | 209 | evaluation_count=1) |
---|
| 210 | |
---|
[1138] | 211 | fitness_end = FitnessStep(frams_lib, fields={parsed_args.opt: "fitness_raw"}, |
---|
[1113] | 212 | fields_defaults={parsed_args.opt: None}, |
---|
[1139] | 213 | evaluation_count=parsed_args.hof_evaluations) |
---|
[1113] | 214 | # Remove |
---|
| 215 | remove = [] |
---|
| 216 | remove.append(FieldRemove("fitness_raw", None)) # Remove individuals if they have default value for fitness |
---|
[1138] | 217 | if parsed_args.max_numparts is not None: |
---|
| 218 | # This could be also implemented by "LambdaRemove(lambda x: x.numparts > parsed_args.num_parts)" |
---|
| 219 | # But this would not serialize in checkpoint. |
---|
| 220 | remove.append(NumPartsHigher(parsed_args.max_numparts)) |
---|
| 221 | if parsed_args.max_numjoints is not None: |
---|
| 222 | remove.append(NumJointsHigher(parsed_args.max_numjoints)) |
---|
| 223 | if parsed_args.max_numneurons is not None: |
---|
| 224 | remove.append(NumNeuronsHigher(parsed_args.max_numneurons)) |
---|
| 225 | if parsed_args.max_numconnections is not None: |
---|
| 226 | remove.append(NumConnectionsHigher(parsed_args.max_numconnections)) |
---|
[1185] | 227 | if parsed_args.max_numgenochars != -1: |
---|
[1182] | 228 | remove.append(NumCharsHigher(parsed_args.max_numgenochars)) |
---|
[1138] | 229 | |
---|
[1113] | 230 | remove_step = UnionStep(remove) |
---|
| 231 | |
---|
| 232 | fitness_remove = UnionStep([fitness_raw, remove_step]) |
---|
| 233 | |
---|
| 234 | init_stages.append(fitness_remove) |
---|
| 235 | new_generation_stages.append(fitness_remove) |
---|
| 236 | |
---|
| 237 | # ------------------------------------------------- |
---|
| 238 | # Novelty or niching |
---|
[1145] | 239 | knn = parsed_args.knn |
---|
| 240 | if parsed_args.fit == Fitness.knn_novelty or parsed_args.fit == Fitness.knn_niching: |
---|
| 241 | reduction_method = "knn_mean" |
---|
| 242 | assert knn is not None, "'k' must be set for knn-based fitness." |
---|
| 243 | assert knn > 0, "'k' must be positive." |
---|
| 244 | assert knn < parsed_args.popsize, "'k' must be smaller than population size." |
---|
| 245 | else: |
---|
| 246 | reduction_method = "mean" |
---|
| 247 | assert knn is None, "'k' is irrelevant unless knn-based fitness is used." |
---|
| 248 | |
---|
[1113] | 249 | dissim = None |
---|
| 250 | if parsed_args.dissim == Dissim.levenshtein: |
---|
[1145] | 251 | dissim = LevenshteinDissimilarity(reduction=reduction_method, knn=knn, output_field="dissim") |
---|
[1113] | 252 | elif parsed_args.dissim == Dissim.frams: |
---|
[1145] | 253 | dissim = FramsDissimilarity(frams_lib, reduction=reduction_method, knn=knn, output_field="dissim") |
---|
[1113] | 254 | |
---|
| 255 | if parsed_args.fit == Fitness.raw: |
---|
| 256 | # Fitness is equal to finess raw |
---|
| 257 | raw = LambdaStep(func_raw) |
---|
| 258 | init_stages.append(raw) |
---|
| 259 | generation_modifications.append(raw) |
---|
| 260 | |
---|
[1182] | 261 | if parsed_args.fit == Fitness.niching: # TODO reduce redundancy in the four cases below: dictionary? |
---|
| 262 | |
---|
[1113] | 263 | niching = UnionStep([ |
---|
[1182] | 264 | ArchiveDissimilarity(parsed_args.archive_size, dissim), |
---|
[1113] | 265 | LambdaStep(func_niching) |
---|
| 266 | ]) |
---|
| 267 | init_stages.append(niching) |
---|
| 268 | generation_modifications.append(niching) |
---|
| 269 | |
---|
| 270 | if parsed_args.fit == Fitness.novelty: |
---|
| 271 | novelty = UnionStep([ |
---|
[1182] | 272 | ArchiveDissimilarity(parsed_args.archive_size, dissim), |
---|
[1113] | 273 | LambdaStep(func_novelty) |
---|
| 274 | ]) |
---|
| 275 | init_stages.append(novelty) |
---|
| 276 | generation_modifications.append(novelty) |
---|
[1182] | 277 | |
---|
[1145] | 278 | if parsed_args.fit == Fitness.knn_niching: |
---|
| 279 | knn_niching = UnionStep([ |
---|
[1182] | 280 | ArchiveDissimilarity(parsed_args.archive_size, dissim), |
---|
[1145] | 281 | LambdaStep(func_knn_niching) |
---|
| 282 | ]) |
---|
| 283 | init_stages.append(knn_niching) |
---|
| 284 | generation_modifications.append(knn_niching) |
---|
[1182] | 285 | |
---|
[1145] | 286 | if parsed_args.fit == Fitness.knn_novelty: |
---|
| 287 | knn_novelty = UnionStep([ |
---|
[1182] | 288 | ArchiveDissimilarity(parsed_args.archive_size, dissim), |
---|
[1145] | 289 | LambdaStep(func_knn_novelty) |
---|
| 290 | ]) |
---|
| 291 | init_stages.append(knn_novelty) |
---|
| 292 | generation_modifications.append(knn_novelty) |
---|
[1113] | 293 | |
---|
| 294 | # ------------------------------------------------- |
---|
| 295 | # Statistics |
---|
[1140] | 296 | hall_of_fame = HallOfFameStatistics(parsed_args.hof_size, "fitness_raw") # Wrapper for halloffamae |
---|
[1139] | 297 | replace_with_hof = ReplaceWithHallOfFame(hall_of_fame) |
---|
[1113] | 298 | statistics_deap = StatisticsDeap([ |
---|
| 299 | ("avg", np.mean), |
---|
| 300 | ("stddev", np.std), |
---|
| 301 | ("min", np.min), |
---|
| 302 | ("max", np.max) |
---|
| 303 | ], extract_fitness) # Wrapper for deap statistics |
---|
| 304 | |
---|
| 305 | statistics_union = UnionStep([ |
---|
| 306 | hall_of_fame, |
---|
| 307 | statistics_deap |
---|
| 308 | ]) # Union of two statistics steps. |
---|
| 309 | |
---|
| 310 | init_stages.append(statistics_union) |
---|
| 311 | generation_modifications.append(statistics_union) |
---|
| 312 | |
---|
| 313 | # ------------------------------------------------- |
---|
[1146] | 314 | # End stages: this will execute exactly once after all generations. |
---|
[1113] | 315 | end_stages = [ |
---|
[1139] | 316 | replace_with_hof, |
---|
[1113] | 317 | fitness_end, |
---|
[1128] | 318 | PopulationSave("halloffame.gen", provider=hall_of_fame.halloffame, fields={"genotype": "genotype", |
---|
[1182] | 319 | "fitness": "fitness_raw"})] |
---|
[1113] | 320 | # ...but custom fields can be added, e.g. "custom": "recording" |
---|
| 321 | |
---|
| 322 | # ------------------------------------------------- |
---|
[1139] | 323 | |
---|
[1113] | 324 | # Experiment creation |
---|
| 325 | |
---|
| 326 | experiment = Experiment(init_population=init_stages, |
---|
| 327 | selection=selection, |
---|
| 328 | new_generation_steps=new_generation_stages, |
---|
| 329 | generation_modification=generation_modifications, |
---|
| 330 | end_steps=end_stages, |
---|
| 331 | population_size=parsed_args.popsize, |
---|
| 332 | checkpoint_path=parsed_args.checkpoint_path, |
---|
| 333 | checkpoint_interval=parsed_args.checkpoint_interval |
---|
| 334 | ) |
---|
[1128] | 335 | return experiment |
---|
| 336 | |
---|
| 337 | |
---|
| 338 | def main(): |
---|
| 339 | print("Running experiment with", sys.argv) |
---|
| 340 | parsed_args = parseArguments() |
---|
[1139] | 341 | if parsed_args.debug: |
---|
| 342 | logging.basicConfig(level=logging.DEBUG) |
---|
[1128] | 343 | |
---|
[1136] | 344 | if parsed_args.checkpoint_path is not None and os.path.exists(parsed_args.checkpoint_path): |
---|
[1128] | 345 | experiment = load_experiment(parsed_args.checkpoint_path) |
---|
| 346 | else: |
---|
| 347 | experiment = create_experiment() |
---|
| 348 | experiment.init() # init is mandatory |
---|
| 349 | |
---|
| 350 | experiment.run(parsed_args.generations) |
---|
| 351 | |
---|
[1113] | 352 | # Next call for experiment.run(10) will do nothing. Parameter 10 specifies how many generations should be |
---|
| 353 | # in one experiment. Previous call generated 10 generations. |
---|
| 354 | # Example 1: |
---|
| 355 | # experiment.init() |
---|
| 356 | # experiment.run(10) |
---|
| 357 | # experiment.run(12) |
---|
| 358 | # #This will run for total of 12 generations |
---|
| 359 | # |
---|
| 360 | # Example 2 |
---|
| 361 | # experiment.init() |
---|
| 362 | # experiment.run(10) |
---|
| 363 | # experiment.init() |
---|
| 364 | # experiment.run(10) |
---|
| 365 | # # All work produced by first run will be "destroyed" by second init(). |
---|
| 366 | |
---|
| 367 | |
---|
| 368 | if __name__ == '__main__': |
---|
[1182] | 369 | main() |
---|