| 1 | #TODO hof should be the complete non-dominated set from the entire process of evolution (all evaluated individuals), not limited in any way (remove '-hof_size'). Now we are not storing the entire Pareto front, but individuals that were better than others in hof [better=on all criteria?] at the time of inserting to hof. Hof has a size limit. |
|---|
| 2 | #TODO when -dissim is used, print its statistics just like all other criteria |
|---|
| 3 | #TODO in statistics, do not print "gen" (generation number) for each criterion |
|---|
| 4 | #TODO if possible, when saving the final .gen file, instead of fitness as a python tuple, save individual criteria - so instead of fitness:(0.005251036058321138, 0.025849976588613266), write "velocity:...\nvertpos:..." (this also applies to other .py examples in this directory) |
|---|
| 5 | |
|---|
| 6 | |
|---|
| 7 | import argparse |
|---|
| 8 | import logging |
|---|
| 9 | import os |
|---|
| 10 | import pickle |
|---|
| 11 | import sys |
|---|
| 12 | import copy |
|---|
| 13 | from enum import Enum |
|---|
| 14 | |
|---|
| 15 | import numpy as np |
|---|
| 16 | |
|---|
| 17 | from deap import base |
|---|
| 18 | from deap import tools |
|---|
| 19 | |
|---|
| 20 | from FramsticksLib import FramsticksLib |
|---|
| 21 | from evolalg_steps.base.lambda_step import LambdaStep |
|---|
| 22 | from evolalg_steps.base.step import Step |
|---|
| 23 | from evolalg_steps.dissimilarity.frams_dissimilarity import FramsDissimilarity |
|---|
| 24 | from evolalg_steps.dissimilarity.levenshtein import LevenshteinDissimilarity |
|---|
| 25 | from evolalg_steps.experiment import Experiment |
|---|
| 26 | from evolalg_steps.fitness.fitness_step import FitnessStep |
|---|
| 27 | from evolalg_steps.mutation_cross.frams_cross_and_mutate import FramsCrossAndMutate |
|---|
| 28 | from evolalg_steps.population.frams_population import FramsPopulation |
|---|
| 29 | from evolalg_steps.repair.remove.field import FieldRemove |
|---|
| 30 | from evolalg_steps.repair.remove.remove import Remove |
|---|
| 31 | from evolalg_steps.selection.nsga2 import NSGA2Selection |
|---|
| 32 | from evolalg_steps.statistics.halloffame_stats import HallOfFameStatistics |
|---|
| 33 | from evolalg_steps.statistics.multistatistics_deap import MultiStatistics |
|---|
| 34 | from evolalg_steps.statistics.statistics_deap import StatisticsDeap |
|---|
| 35 | from evolalg_steps.base.union_step import UnionStep |
|---|
| 36 | from evolalg_steps.utils.population_save import PopulationSave |
|---|
| 37 | |
|---|
| 38 | |
|---|
| 39 | def ensureDir(string): |
|---|
| 40 | if os.path.isdir(string): |
|---|
| 41 | return string |
|---|
| 42 | else: |
|---|
| 43 | raise NotADirectoryError(string) |
|---|
| 44 | |
|---|
| 45 | |
|---|
| 46 | class Dissim(Enum): |
|---|
| 47 | levenshtein = "levenshtein" |
|---|
| 48 | frams = "frams" |
|---|
| 49 | |
|---|
| 50 | def __str__(self): |
|---|
| 51 | return self.name |
|---|
| 52 | |
|---|
| 53 | |
|---|
| 54 | |
|---|
| 55 | def parseArguments(): |
|---|
| 56 | parser = argparse.ArgumentParser( |
|---|
| 57 | description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[ |
|---|
| 58 | 0]) |
|---|
| 59 | parser.add_argument('-path', type=ensureDir, required=True, |
|---|
| 60 | help='Path to the Framsticks library without trailing slash.') |
|---|
| 61 | parser.add_argument('-opt', required=True, |
|---|
| 62 | help='optimization criteria seperated with a comma: vertpos, velocity, distance, vertvel, lifespan, numjoints, numparts, numneurons, numconnections (and others as long as they are provided by the .sim file and its .expdef). Single or multiple criteria.') |
|---|
| 63 | parser.add_argument('-lib', required=False, help="Filename of .so or .dll with the Framsticks library") |
|---|
| 64 | |
|---|
| 65 | parser.add_argument('-genformat', required=False, default="1", |
|---|
| 66 | help='Genetic format for the demo run, for example 4, 9, or B. If not given, f1 is assumed.') |
|---|
| 67 | parser.add_argument('-sim', required=False, default="eval-allcriteria.sim", |
|---|
| 68 | help="Name of the .sim file with all parameter values. If you want to provide more files, separate them with a semicolon ';'.") |
|---|
| 69 | parser.add_argument('-dissim', required=False, type=Dissim, default=Dissim.frams, |
|---|
| 70 | help='Dissimilarity measure, default: frams', choices=list(Dissim)) |
|---|
| 71 | parser.add_argument('-popsize', type=int, default=40, help="Population size (must be a multiple of 4), default: 40.") # mod 4 because of DEAP |
|---|
| 72 | parser.add_argument('-generations', type=int, default=5, help="Number of generations, default: 5.") |
|---|
| 73 | |
|---|
| 74 | parser.add_argument('-max_numparts', type=int, default=None, help="Maximum number of Parts. Default: no limit") |
|---|
| 75 | parser.add_argument('-max_numjoints', type=int, default=None, help="Maximum number of Joints. Default: no limit") |
|---|
| 76 | parser.add_argument('-max_numneurons', type=int, default=None, help="Maximum number of Neurons. Default: no limit") |
|---|
| 77 | parser.add_argument('-max_numconnections', type=int, default=None, |
|---|
| 78 | help="Maximum number of Neural connections. Default: no limit") |
|---|
| 79 | |
|---|
| 80 | parser.add_argument('-hof_size', type=int, default=10, help="Number of genotypes in Hall of Fame. Default: 10.") |
|---|
| 81 | parser.add_argument('-hof_evaluations', type=int, default=20, |
|---|
| 82 | help="Number of final evaluations of each genotype in Hall of Fame to obtain reliable (averaged) fitness. Default: 20.") |
|---|
| 83 | parser.add_argument('-checkpoint_path', required=False, default=None, help="Path to the checkpoint file") |
|---|
| 84 | parser.add_argument('-checkpoint_interval', required=False, type=int, default=100, help="Checkpoint interval") |
|---|
| 85 | parser.add_argument('-debug', dest='debug', action='store_true', help="Prints names of steps as they are executed") |
|---|
| 86 | parser.set_defaults(debug=False) |
|---|
| 87 | return parser.parse_args() |
|---|
| 88 | |
|---|
| 89 | |
|---|
| 90 | class NumPartsHigher(Remove): |
|---|
| 91 | def __init__(self, max_number): |
|---|
| 92 | super(NumPartsHigher, self).__init__() |
|---|
| 93 | self.max_number = max_number |
|---|
| 94 | |
|---|
| 95 | def remove(self, individual): |
|---|
| 96 | return individual.numparts > self.max_number |
|---|
| 97 | |
|---|
| 98 | |
|---|
| 99 | class NumJointsHigher(Remove): |
|---|
| 100 | def __init__(self, max_number): |
|---|
| 101 | super(NumJointsHigher, self).__init__() |
|---|
| 102 | self.max_number = max_number |
|---|
| 103 | |
|---|
| 104 | def remove(self, individual): |
|---|
| 105 | return individual.numjoints > self.max_number |
|---|
| 106 | |
|---|
| 107 | |
|---|
| 108 | class NumNeuronsHigher(Remove): |
|---|
| 109 | def __init__(self, max_number): |
|---|
| 110 | super(NumNeuronsHigher, self).__init__() |
|---|
| 111 | self.max_number = max_number |
|---|
| 112 | |
|---|
| 113 | def remove(self, individual): |
|---|
| 114 | return individual.numneurons > self.max_number |
|---|
| 115 | |
|---|
| 116 | |
|---|
| 117 | class NumConnectionsHigher(Remove): |
|---|
| 118 | def __init__(self, max_number): |
|---|
| 119 | super(NumConnectionsHigher, self).__init__() |
|---|
| 120 | self.max_number = max_number |
|---|
| 121 | |
|---|
| 122 | def remove(self, individual): |
|---|
| 123 | return individual.numconnections > self.max_number |
|---|
| 124 | |
|---|
| 125 | |
|---|
| 126 | class ReplaceWithHallOfFame(Step): |
|---|
| 127 | def __init__(self, hof, *args, **kwargs): |
|---|
| 128 | super(ReplaceWithHallOfFame, self).__init__(*args, **kwargs) |
|---|
| 129 | self.hof = hof |
|---|
| 130 | |
|---|
| 131 | def call(self, population, *args, **kwargs): |
|---|
| 132 | super(ReplaceWithHallOfFame, self).call(population) |
|---|
| 133 | return list(self.hof.halloffame) |
|---|
| 134 | |
|---|
| 135 | |
|---|
| 136 | class DeapFitness(base.Fitness): |
|---|
| 137 | weights = (1, 1) |
|---|
| 138 | |
|---|
| 139 | def __init__(self, *args, **kwargs): |
|---|
| 140 | super(DeapFitness, self).__init__(*args, **kwargs) |
|---|
| 141 | |
|---|
| 142 | |
|---|
| 143 | class Nsga2Fitness: |
|---|
| 144 | def __init__(self, fields): |
|---|
| 145 | self.fields = fields |
|---|
| 146 | def __call__(self, ind): |
|---|
| 147 | setattr(ind, "fitness", DeapFitness(tuple(getattr(ind, _) for _ in self.fields))) |
|---|
| 148 | |
|---|
| 149 | |
|---|
| 150 | |
|---|
| 151 | class ExtractField: |
|---|
| 152 | def __init__(self, field_name): |
|---|
| 153 | self.field_name = field_name |
|---|
| 154 | def __call__(self, ind): |
|---|
| 155 | return getattr(ind, self.field_name) |
|---|
| 156 | |
|---|
| 157 | def extract_fitness(ind): |
|---|
| 158 | return ind.fitness_raw |
|---|
| 159 | |
|---|
| 160 | |
|---|
| 161 | def load_experiment(path): |
|---|
| 162 | with open(path, "rb") as file: |
|---|
| 163 | experiment = pickle.load(file) |
|---|
| 164 | print("Loaded experiment. Generation:", experiment.generation) |
|---|
| 165 | return experiment |
|---|
| 166 | |
|---|
| 167 | |
|---|
| 168 | def create_experiment(): |
|---|
| 169 | parsed_args = parseArguments() |
|---|
| 170 | frams_lib = FramsticksLib(parsed_args.path, parsed_args.lib, parsed_args.sim) |
|---|
| 171 | |
|---|
| 172 | opt_dissim = [] |
|---|
| 173 | opt_fitness = [] |
|---|
| 174 | for crit in parsed_args.opt.split(','): |
|---|
| 175 | try: |
|---|
| 176 | Dissim(crit) |
|---|
| 177 | opt_dissim.append(crit) |
|---|
| 178 | except ValueError: |
|---|
| 179 | opt_fitness.append(crit) |
|---|
| 180 | if len(opt_dissim) > 1: |
|---|
| 181 | raise ValueError("Only one type of dissimilarity supported") |
|---|
| 182 | |
|---|
| 183 | # Steps for generating first population |
|---|
| 184 | init_stages = [ |
|---|
| 185 | FramsPopulation(frams_lib, parsed_args.genformat, parsed_args.popsize) |
|---|
| 186 | ] |
|---|
| 187 | |
|---|
| 188 | # Selection procedure |
|---|
| 189 | selection = NSGA2Selection(copy=True) |
|---|
| 190 | |
|---|
| 191 | # Procedure for generating new population. This steps will be run as long there is less than |
|---|
| 192 | # popsize individuals in the new population |
|---|
| 193 | new_generation_stages = [FramsCrossAndMutate(frams_lib, cross_prob=0.2, mutate_prob=0.9)] |
|---|
| 194 | |
|---|
| 195 | # Steps after new population is created. Executed exactly once per generation. |
|---|
| 196 | generation_modifications = [] |
|---|
| 197 | |
|---|
| 198 | # ------------------------------------------------- |
|---|
| 199 | # Fitness |
|---|
| 200 | |
|---|
| 201 | fitness_raw = FitnessStep(frams_lib, fields={**{_:_ for _ in opt_fitness}, |
|---|
| 202 | "numparts": "numparts", |
|---|
| 203 | "numjoints": "numjoints", |
|---|
| 204 | "numneurons": "numneurons", |
|---|
| 205 | "numconnections": "numconnections"}, |
|---|
| 206 | fields_defaults={parsed_args.opt: None, "numparts": float("inf"), |
|---|
| 207 | "numjoints": float("inf"), "numneurons": float("inf"), |
|---|
| 208 | "numconnections": float("inf"), |
|---|
| 209 | **{_:None for _ in opt_fitness} |
|---|
| 210 | }, |
|---|
| 211 | evaluation_count=1) |
|---|
| 212 | |
|---|
| 213 | fitness_end = FitnessStep(frams_lib, fields={_:_ for _ in opt_fitness}, |
|---|
| 214 | fields_defaults={parsed_args.opt: None}, |
|---|
| 215 | evaluation_count=parsed_args.hof_evaluations) |
|---|
| 216 | # Remove |
|---|
| 217 | remove = [] |
|---|
| 218 | remove.append(FieldRemove(opt_fitness[0], None)) # Remove individuals if they have default value for fitness |
|---|
| 219 | if parsed_args.max_numparts is not None: |
|---|
| 220 | # This could be also implemented by "LambdaRemove(lambda x: x.numparts > parsed_args.num_parts)" |
|---|
| 221 | # But this would not serialize in checkpoint. |
|---|
| 222 | remove.append(NumPartsHigher(parsed_args.max_numparts)) |
|---|
| 223 | if parsed_args.max_numjoints is not None: |
|---|
| 224 | remove.append(NumJointsHigher(parsed_args.max_numjoints)) |
|---|
| 225 | if parsed_args.max_numneurons is not None: |
|---|
| 226 | remove.append(NumNeuronsHigher(parsed_args.max_numneurons)) |
|---|
| 227 | if parsed_args.max_numconnections is not None: |
|---|
| 228 | remove.append(NumConnectionsHigher(parsed_args.max_numconnections)) |
|---|
| 229 | |
|---|
| 230 | remove_step = UnionStep(remove) |
|---|
| 231 | |
|---|
| 232 | fitness_remove = UnionStep([fitness_raw, remove_step]) |
|---|
| 233 | |
|---|
| 234 | init_stages.append(fitness_remove) |
|---|
| 235 | new_generation_stages.append(fitness_remove) |
|---|
| 236 | |
|---|
| 237 | # ------------------------------------------------- |
|---|
| 238 | # Dissimilarity as one of the criteria |
|---|
| 239 | dissim = None |
|---|
| 240 | if len(opt_dissim) > 0 and Dissim(opt_dissim[0]) == Dissim.levenshtein: |
|---|
| 241 | dissim = LevenshteinDissimilarity(reduction="mean", output_field="dissim") |
|---|
| 242 | elif len(opt_dissim) > 0 and Dissim(opt_dissim[0]) == Dissim.frams: |
|---|
| 243 | dissim = FramsDissimilarity(frams_lib, reduction="mean", output_field="dissim") |
|---|
| 244 | |
|---|
| 245 | if dissim is not None: |
|---|
| 246 | init_stages.append(dissim) |
|---|
| 247 | generation_modifications.append(dissim) |
|---|
| 248 | |
|---|
| 249 | if dissim is not None: |
|---|
| 250 | nsga2_fittnes = Nsga2Fitness(["dissim"]+ opt_fitness) |
|---|
| 251 | else: |
|---|
| 252 | nsga2_fittnes = Nsga2Fitness(opt_fitness) |
|---|
| 253 | |
|---|
| 254 | init_stages.append(LambdaStep(nsga2_fittnes)) |
|---|
| 255 | generation_modifications.append(LambdaStep(nsga2_fittnes)) |
|---|
| 256 | |
|---|
| 257 | # ------------------------------------------------- |
|---|
| 258 | # Statistics |
|---|
| 259 | hall_of_fame = HallOfFameStatistics(parsed_args.hof_size, "fitness") # Wrapper for halloffamae |
|---|
| 260 | replace_with_hof = ReplaceWithHallOfFame(hall_of_fame) |
|---|
| 261 | statistics_deap = MultiStatistics({fit:StatisticsDeap([ |
|---|
| 262 | ("avg", np.mean), |
|---|
| 263 | ("stddev", np.std), |
|---|
| 264 | ("min", np.min), |
|---|
| 265 | ("max", np.max) |
|---|
| 266 | ], ExtractField(fit)) for fit in opt_fitness}) # Wrapper for deap statistics |
|---|
| 267 | |
|---|
| 268 | statistics_union = UnionStep( |
|---|
| 269 | [hall_of_fame, |
|---|
| 270 | statistics_deap] |
|---|
| 271 | ) # Union of two statistics steps. |
|---|
| 272 | |
|---|
| 273 | init_stages.append(statistics_union) |
|---|
| 274 | generation_modifications.append(statistics_union) |
|---|
| 275 | |
|---|
| 276 | # ------------------------------------------------- |
|---|
| 277 | # End stages: this will execute exactly once after all generations. |
|---|
| 278 | end_stages = [ |
|---|
| 279 | replace_with_hof, |
|---|
| 280 | fitness_end, |
|---|
| 281 | PopulationSave("halloffame.gen", provider=hall_of_fame.halloffame, fields={"genotype": "genotype", |
|---|
| 282 | "fitness": "fitness"})] |
|---|
| 283 | # ...but custom fields can be added, e.g. "custom": "recording" |
|---|
| 284 | |
|---|
| 285 | # ------------------------------------------------- |
|---|
| 286 | |
|---|
| 287 | # Experiment creation |
|---|
| 288 | |
|---|
| 289 | experiment = Experiment(init_population=init_stages, |
|---|
| 290 | selection=selection, |
|---|
| 291 | new_generation_steps=new_generation_stages, |
|---|
| 292 | generation_modification=generation_modifications, |
|---|
| 293 | end_steps=end_stages, |
|---|
| 294 | population_size=parsed_args.popsize, |
|---|
| 295 | checkpoint_path=parsed_args.checkpoint_path, |
|---|
| 296 | checkpoint_interval=parsed_args.checkpoint_interval |
|---|
| 297 | ) |
|---|
| 298 | return experiment |
|---|
| 299 | |
|---|
| 300 | |
|---|
| 301 | def main(): |
|---|
| 302 | print("Running experiment with", sys.argv) |
|---|
| 303 | parsed_args = parseArguments() |
|---|
| 304 | |
|---|
| 305 | if parsed_args.popsize % 4 != 0: |
|---|
| 306 | raise ValueError("popsize must be a multiple of 4 (for example %d)." % (parsed_args.popsize//4*4)) # required by deap.tools.selTournamentDCD() |
|---|
| 307 | |
|---|
| 308 | if parsed_args.debug: |
|---|
| 309 | logging.basicConfig(level=logging.DEBUG) |
|---|
| 310 | |
|---|
| 311 | if parsed_args.checkpoint_path is not None and os.path.exists(parsed_args.checkpoint_path): |
|---|
| 312 | experiment = load_experiment(parsed_args.checkpoint_path) |
|---|
| 313 | else: |
|---|
| 314 | experiment = create_experiment() |
|---|
| 315 | experiment.init() # init is mandatory |
|---|
| 316 | |
|---|
| 317 | experiment.run(parsed_args.generations) |
|---|
| 318 | |
|---|
| 319 | # Next call for experiment.run(10) will do nothing. Parameter 10 specifies how many generations should be |
|---|
| 320 | # in one experiment. Previous call generated 10 generations. |
|---|
| 321 | # Example 1: |
|---|
| 322 | # experiment.init() |
|---|
| 323 | # experiment.run(10) |
|---|
| 324 | # experiment.run(12) |
|---|
| 325 | # #This will run for total of 12 generations |
|---|
| 326 | # |
|---|
| 327 | # Example 2 |
|---|
| 328 | # experiment.init() |
|---|
| 329 | # experiment.run(10) |
|---|
| 330 | # experiment.init() |
|---|
| 331 | # experiment.run(10) |
|---|
| 332 | # # All work produced by first run will be "destroyed" by second init(). |
|---|
| 333 | |
|---|
| 334 | |
|---|
| 335 | if __name__ == '__main__': |
|---|
| 336 | main() |
|---|