1 | from abc import ABC |
---|
2 | |
---|
3 | from evolalg_steps.base.step import Step |
---|
4 | import numpy as np |
---|
5 | |
---|
6 | |
---|
7 | class Dissimilarity(Step, ABC): |
---|
8 | |
---|
9 | def __init__(self, reduction="mean", output_field="dissim", knn=None, *args, **kwargs): |
---|
10 | super(Dissimilarity, self).__init__(*args, **kwargs) |
---|
11 | |
---|
12 | self.output_field = output_field |
---|
13 | self.fn_reduce = Dissimilarity.get_reduction_by_name(reduction) |
---|
14 | self.knn = knn |
---|
15 | |
---|
16 | |
---|
17 | @staticmethod |
---|
18 | def reduce(dissim_matrix, fn_reduce, knn): |
---|
19 | if fn_reduce is None: |
---|
20 | return dissim_matrix |
---|
21 | elif fn_reduce is Dissimilarity.knn_mean: |
---|
22 | return fn_reduce(dissim_matrix, 1, knn) |
---|
23 | else: |
---|
24 | return fn_reduce(dissim_matrix, axis=1) |
---|
25 | |
---|
26 | |
---|
27 | @staticmethod |
---|
28 | def knn_mean(dissim_matrix, axis, knn): |
---|
29 | return np.mean(np.partition(dissim_matrix, knn)[:, :knn], axis=axis) |
---|
30 | |
---|
31 | |
---|
32 | @staticmethod |
---|
33 | def get_reduction_by_name(reduction: str): |
---|
34 | |
---|
35 | if reduction not in REDUCTION_FUNCTION: |
---|
36 | raise ValueError(f"Unknown reduction type '{reduction}'. Supported: {','.join(REDUCTION_FUNCTION.keys())}") |
---|
37 | |
---|
38 | return REDUCTION_FUNCTION[reduction] |
---|
39 | |
---|
40 | |
---|
41 | |
---|
42 | REDUCTION_FUNCTION = { |
---|
43 | "mean": np.mean, |
---|
44 | "max": np.max, |
---|
45 | "min": np.min, |
---|
46 | "sum": np.sum, |
---|
47 | "knn_mean": Dissimilarity.knn_mean, |
---|
48 | "none": None |
---|
49 | } |
---|