from FramsticksLib import FramsticksLib from .frams_base.experiment_frams_niching import ExperimentFramsNiching def main(): # random.seed(123) # see FramsticksLib.DETERMINISTIC below, set to True if you want full determinism # must be set before FramsticksLib() constructor call FramsticksLib.DETERMINISTIC = False parsed_args = ExperimentFramsNiching.get_args_for_parser().parse_args() print("Argument values:", ", ".join( ['%s=%s' % (arg, getattr(parsed_args, arg)) for arg in vars(parsed_args)])) # multiple criteria not supported here. If needed, use FramsticksEvolution.py opt_criteria = parsed_args.opt.split(",") framsLib = FramsticksLib( parsed_args.path, parsed_args.lib, parsed_args.sim) constrains = {"max_numparts": parsed_args.max_numparts, "max_numjoints": parsed_args.max_numjoints, "max_numneurons": parsed_args.max_numneurons, "max_numconnections": parsed_args.max_numconnections, "max_numgenochars": parsed_args.max_numgenochars, } print('Best individuals:') experiment = ExperimentFramsNiching(frams_lib=framsLib, optimization_criteria=opt_criteria, hof_size=parsed_args.hof_size, constraints=constrains, normalize=parsed_args.normalize, dissim=parsed_args.dissim, fit=parsed_args.fit, genformat=parsed_args.genformat, popsize=parsed_args.popsize, archive_size=parsed_args.archive, save_only_best=parsed_args.save_only_best, knn_niching=parsed_args.knn_niching, knn_nslc=parsed_args.knn_nslc) experiment.evolve(hof_savefile=parsed_args.hof_savefile, generations=parsed_args.generations, initialgenotype=parsed_args.initialgenotype, pmut=parsed_args.pmut, pxov=parsed_args.pxov, tournament_size=parsed_args.tournament) if __name__ == "__main__": main()