source: framspy/evolalg/frams_base/experiment_frams_niching.py @ 1271

Last change on this file since 1271 was 1270, checked in by Maciej Komosinski, 17 months ago

Added the "k" parameter (the number of most similar neighbors) to NSLC and local niching

File size: 2.7 KB
Line 
1from ..base.experiment_niching_abc import ExperimentNiching
2from ..structures.individual import Individual
3from ..structures.population import PopulationStructures
4from ..utils import merge_two_parsers
5from .experiment_frams import ExperimentFrams
6
7
8class ExperimentFramsNiching(ExperimentFrams, ExperimentNiching):
9    def __init__(self, frams_lib, optimization_criteria, hof_size, popsize, constraints, normalize, dissim, fit, genformat, archive_size, save_only_best, knn_niching, knn_nslc) -> None:
10        ExperimentFrams.__init__(self, hof_size=hof_size,
11                                 popsize=popsize,
12                                 frams_lib=frams_lib,
13                                 constraints=constraints,
14                                 optimization_criteria=optimization_criteria,
15                                 genformat=genformat,
16                                 save_only_best=save_only_best
17                                 )
18        ExperimentNiching.__init__(self, hof_size=hof_size,
19                                   popsize=popsize,
20                                   fit=fit,
21                                   normalize=normalize,
22                                   save_only_best=save_only_best,
23                                   archive_size=archive_size,
24                                   knn_niching=knn_niching,
25                                   knn_nslc=knn_nslc
26                                   )
27        self.dissim = dissim
28       
29
30    def initialize_evolution(self, genformat, initialgenotype):
31        self.current_generation = 0
32        self.time_elapsed = 0
33        self.stats = []  # stores the best individuals, one from each generation
34        initial_individual = Individual()
35        initial_individual.set_and_evaluate(self.frams_getsimplest(
36            '1' if genformat is None else genformat, initialgenotype), self.evaluate)
37        self.hof.add(initial_individual)
38        self.stats.append(
39            initial_individual.rawfitness if self.save_only_best else initial_individual)
40        self.population_structures = PopulationStructures(
41            initial_individual=initial_individual, archive_size=self.archive_size, popsize=self.popsize)
42        if self.fit == "nsga2":
43            self.do_nsga2_dissim(self.population_structures.population)
44        if self.fit == "nslc":
45            self.do_nslc_dissim(self.population_structures.population)
46
47    def dissimilarity(self, population):
48        return self.frams_lib.dissimilarity([i.genotype for i in population], self.dissim)
49
50
51    @staticmethod
52    def get_args_for_parser():
53        p1 = ExperimentFrams.get_args_for_parser()
54        p2 = ExperimentNiching.get_args_for_parser()
55        return merge_two_parsers(p1, p2)
56
Note: See TracBrowser for help on using the repository browser.