source: framspy/evolalg/examples/niching_novelty.py @ 1164

Last change on this file since 1164 was 1149, checked in by Maciej Komosinski, 3 years ago

Added support for loading multiple .sim files where each can overwrite selected settings

File size: 14.1 KB
Line 
1import argparse
2import logging
3import os
4import pickle
5import sys
6from enum import Enum
7
8import numpy as np
9
10from FramsticksLib import FramsticksLib
11from evolalg.base.lambda_step import LambdaStep
12from evolalg.base.step import Step
13from evolalg.dissimilarity.frams_dissimilarity import FramsDissimilarity
14from evolalg.dissimilarity.levenshtein import LevenshteinDissimilarity
15from evolalg.experiment import Experiment
16from evolalg.fitness.fitness_step import FitnessStep
17from evolalg.mutation_cross.frams_cross_and_mutate import FramsCrossAndMutate
18from evolalg.population.frams_population import FramsPopulation
19from evolalg.repair.remove.field import FieldRemove
20from evolalg.repair.remove.remove import Remove
21from evolalg.selection.tournament import TournamentSelection
22from evolalg.statistics.halloffame_stats import HallOfFameStatistics
23from evolalg.statistics.statistics_deap import StatisticsDeap
24from evolalg.base.union_step import UnionStep
25from evolalg.utils.population_save import PopulationSave
26
27
28def ensureDir(string):
29    if os.path.isdir(string):
30        return string
31    else:
32        raise NotADirectoryError(string)
33
34
35class Dissim(Enum):
36    levenshtein = "levenshtein"
37    frams = "frams"
38
39    def __str__(self):
40        return self.name
41
42
43class Fitness(Enum):
44    raw = "raw"
45    niching = "niching"
46    novelty = "novelty"
47    knn_niching = "knn_niching"
48    knn_novelty = "knn_novelty"
49
50    def __str__(self):
51        return self.name
52
53
54def parseArguments():
55    parser = argparse.ArgumentParser(
56        description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[
57            0])
58    parser.add_argument('-path', type=ensureDir, required=True, help='Path to the Framsticks library without trailing slash.')
59    parser.add_argument('-opt', required=True,
60                        help='optimization criteria: vertpos, velocity, distance, vertvel, lifespan, numjoints, numparts, numneurons, numconnections (or other as long as it is provided by the .sim file and its .expdef). For multiple criteria optimization, see multicriteria.py.')
61    parser.add_argument('-lib', required=False, help="Filename of .so or .dll with the Framsticks library")
62
63    parser.add_argument('-genformat', required=False, default="1",
64                        help='Genetic format for the demo run, for example 4, 9, or B. If not given, f1 is assumed.')
65    parser.add_argument('-sim', required=False, default="eval-allcriteria.sim", help="Name of the .sim file with all parameter values. If you want to provide more files, separate them with a semicolon ';'.")
66    parser.add_argument('-fit', required=False, default=Fitness.raw, type=Fitness,
67                        help=' Fitness criteria, default: raw', choices=list(Fitness))
68    parser.add_argument('-dissim', required=False, type=Dissim, default=Dissim.frams,
69                        help='Dissimilarity measure, default: frams', choices=list(Dissim))
70    parser.add_argument('-knn', type=int, help="'k' value for knn-based fitness criteria (knn-niching and knn-novelty).")
71    parser.add_argument('-popsize', type=int, default=50, help="Population size, default: 50.")
72    parser.add_argument('-generations', type=int, default=5, help="Number of generations, default: 5.")
73    parser.add_argument('-tournament', type=int, default=5, help="Tournament size, default: 5.")
74
75    parser.add_argument('-max_numparts', type=int, default=None, help="Maximum number of Parts. Default: no limit")
76    parser.add_argument('-max_numjoints', type=int, default=None, help="Maximum number of Joints. Default: no limit")
77    parser.add_argument('-max_numneurons', type=int, default=None, help="Maximum number of Neurons. Default: no limit")
78    parser.add_argument('-max_numconnections', type=int, default=None, help="Maximum number of Neural connections. Default: no limit")
79
80    parser.add_argument('-hof_size', type=int, default=10, help="Number of genotypes in Hall of Fame. Default: 10.")
81    parser.add_argument('-hof_evaluations', type=int, default=20, help="Number of final evaluations of each genotype in Hall of Fame to obtain reliable (averaged) fitness. Default: 20.")
82    parser.add_argument('-checkpoint_path', required=False, default=None, help="Path to the checkpoint file")
83    parser.add_argument('-checkpoint_interval', required=False, type=int, default=100, help="Checkpoint interval")
84    parser.add_argument('-debug', dest='debug', action='store_true', help="Prints names of steps as they are executed")
85    parser.set_defaults(debug=False)
86    return parser.parse_args()
87
88
89def extract_fitness(ind):
90    return ind.fitness_raw
91
92
93def print_population_count(pop):
94    print("Current popsize:", len(pop))
95    return pop  # Each step must return a population
96
97
98class NumPartsHigher(Remove):
99    def __init__(self, max_number):
100        super(NumPartsHigher, self).__init__()
101        self.max_number = max_number
102
103    def remove(self, individual):
104        return individual.numparts > self.max_number
105
106
107class NumJointsHigher(Remove):
108    def __init__(self, max_number):
109        super(NumJointsHigher, self).__init__()
110        self.max_number = max_number
111
112    def remove(self, individual):
113        return individual.numjoints > self.max_number
114
115
116class NumNeuronsHigher(Remove):
117    def __init__(self, max_number):
118        super(NumNeuronsHigher, self).__init__()
119        self.max_number = max_number
120
121    def remove(self, individual):
122        return individual.numneurons > self.max_number
123
124
125class NumConnectionsHigher(Remove):
126    def __init__(self, max_number):
127        super(NumConnectionsHigher, self).__init__()
128        self.max_number = max_number
129
130    def remove(self, individual):
131        return individual.numconnections > self.max_number
132
133
134class ReplaceWithHallOfFame(Step):
135    def __init__(self, hof, *args, **kwargs):
136        super(ReplaceWithHallOfFame, self).__init__(*args, **kwargs)
137        self.hof = hof
138    def call(self, population, *args, **kwargs):
139        super(ReplaceWithHallOfFame, self).call(population)
140        return list(self.hof.halloffame)
141
142
143def func_raw(ind): setattr(ind, "fitness", ind.fitness_raw)
144
145
146def func_novelty(ind): setattr(ind, "fitness", ind.dissim)
147
148
149def func_knn_novelty(ind): setattr(ind, "fitness", ind.dissim)
150
151
152def func_niching(ind): setattr(ind, "fitness", ind.fitness_raw * (1 + ind.dissim))
153
154
155def func_knn_niching(ind): setattr(ind, "fitness", ind.fitness_raw * (1 + ind.dissim))
156
157
158def load_experiment(path):
159    with open(path, "rb") as file:
160        experiment = pickle.load(file)
161    print("Loaded experiment. Generation:", experiment.generation)
162    return experiment
163
164
165def create_experiment():
166    parsed_args = parseArguments()
167    frams_lib = FramsticksLib(parsed_args.path, parsed_args.lib,
168                          parsed_args.sim.split(";"))
169    # Steps for generating first population
170    init_stages = [
171        FramsPopulation(frams_lib, parsed_args.genformat, parsed_args.popsize)
172    ]
173
174    # Selection procedure
175    selection = TournamentSelection(parsed_args.tournament,
176                                    copy=True)  # 'fitness' by default, the targeted attribute can be changed, e.g. fit_attr="fitness_raw"
177
178    # Procedure for generating new population. This steps will be run as long there is less than
179    # popsize individuals in the new population
180    new_generation_stages = [FramsCrossAndMutate(frams_lib, cross_prob=0.2, mutate_prob=0.9)]
181
182    # Steps after new population is created. Executed exactly once per generation.
183    generation_modifications = []
184
185    # -------------------------------------------------
186    # Fitness
187
188    fitness_raw = FitnessStep(frams_lib, fields={parsed_args.opt: "fitness_raw",
189                                             "numparts": "numparts",
190                                             "numjoints": "numjoints",
191                                             "numneurons": "numneurons",
192                                             "numconnections": "numconnections"},
193                              fields_defaults={parsed_args.opt: None, "numparts": float("inf"),
194                                               "numjoints": float("inf"), "numneurons": float("inf"),
195                                               "numconnections": float("inf")},
196                              evaluation_count=1)
197
198
199    fitness_end = FitnessStep(frams_lib, fields={parsed_args.opt: "fitness_raw"},
200                              fields_defaults={parsed_args.opt: None},
201                              evaluation_count=parsed_args.hof_evaluations)
202    # Remove
203    remove = []
204    remove.append(FieldRemove("fitness_raw", None))  # Remove individuals if they have default value for fitness
205    if parsed_args.max_numparts is not None:
206        # This could be also implemented by "LambdaRemove(lambda x: x.numparts > parsed_args.num_parts)"
207        # But this would not serialize in checkpoint.
208        remove.append(NumPartsHigher(parsed_args.max_numparts))
209    if parsed_args.max_numjoints is not None:
210        remove.append(NumJointsHigher(parsed_args.max_numjoints))
211    if parsed_args.max_numneurons is not None:
212        remove.append(NumNeuronsHigher(parsed_args.max_numneurons))
213    if parsed_args.max_numconnections is not None:
214        remove.append(NumConnectionsHigher(parsed_args.max_numconnections))
215
216    remove_step = UnionStep(remove)
217
218    fitness_remove = UnionStep([fitness_raw, remove_step])
219
220    init_stages.append(fitness_remove)
221    new_generation_stages.append(fitness_remove)
222
223    # -------------------------------------------------
224    # Novelty or niching
225    knn = parsed_args.knn
226    if parsed_args.fit == Fitness.knn_novelty or parsed_args.fit == Fitness.knn_niching:
227        reduction_method = "knn_mean"
228        assert knn is not None, "'k' must be set for knn-based fitness."
229        assert knn > 0, "'k' must be positive."
230        assert knn < parsed_args.popsize, "'k' must be smaller than population size."
231    else:
232        reduction_method = "mean"
233        assert knn is None, "'k' is irrelevant unless knn-based fitness is used."
234
235    dissim = None
236    if parsed_args.dissim == Dissim.levenshtein:
237        dissim = LevenshteinDissimilarity(reduction=reduction_method, knn=knn, output_field="dissim")
238    elif parsed_args.dissim == Dissim.frams:
239        dissim = FramsDissimilarity(frams_lib, reduction=reduction_method, knn=knn, output_field="dissim")
240
241    if parsed_args.fit == Fitness.raw:
242        # Fitness is equal to finess raw
243        raw = LambdaStep(func_raw)
244        init_stages.append(raw)
245        generation_modifications.append(raw)
246
247    if parsed_args.fit == Fitness.niching: # TODO reduce redundancy in the four cases below: dictionary?
248        niching = UnionStep([
249            dissim,
250            LambdaStep(func_niching)
251        ])
252        init_stages.append(niching)
253        generation_modifications.append(niching)
254
255    if parsed_args.fit == Fitness.novelty:
256        novelty = UnionStep([
257            dissim,
258            LambdaStep(func_novelty)
259        ])
260        init_stages.append(novelty)
261        generation_modifications.append(novelty)
262   
263    if parsed_args.fit == Fitness.knn_niching:
264        knn_niching = UnionStep([
265            dissim,
266            LambdaStep(func_knn_niching)
267        ])
268        init_stages.append(knn_niching)
269        generation_modifications.append(knn_niching)
270   
271    if parsed_args.fit == Fitness.knn_novelty:
272        knn_novelty = UnionStep([
273            dissim,
274            LambdaStep(func_knn_novelty)
275        ])
276        init_stages.append(knn_novelty)
277        generation_modifications.append(knn_novelty)
278
279    # -------------------------------------------------
280    # Statistics
281    hall_of_fame = HallOfFameStatistics(parsed_args.hof_size, "fitness_raw")  # Wrapper for halloffamae
282    replace_with_hof = ReplaceWithHallOfFame(hall_of_fame)
283    statistics_deap = StatisticsDeap([
284        ("avg", np.mean),
285        ("stddev", np.std),
286        ("min", np.min),
287        ("max", np.max)
288    ], extract_fitness)  # Wrapper for deap statistics
289
290    statistics_union = UnionStep([
291        hall_of_fame,
292        statistics_deap
293    ])  # Union of two statistics steps.
294
295    init_stages.append(statistics_union)
296    generation_modifications.append(statistics_union)
297
298    # -------------------------------------------------
299    # End stages: this will execute exactly once after all generations.
300    end_stages = [
301        replace_with_hof,
302        fitness_end,
303        PopulationSave("halloffame.gen", provider=hall_of_fame.halloffame, fields={"genotype": "genotype",
304                                                                                  "fitness": "fitness_raw"})]
305    # ...but custom fields can be added, e.g. "custom": "recording"
306
307    # -------------------------------------------------
308
309
310
311    # Experiment creation
312
313
314    experiment = Experiment(init_population=init_stages,
315                            selection=selection,
316                            new_generation_steps=new_generation_stages,
317                            generation_modification=generation_modifications,
318                            end_steps=end_stages,
319                            population_size=parsed_args.popsize,
320                            checkpoint_path=parsed_args.checkpoint_path,
321                            checkpoint_interval=parsed_args.checkpoint_interval
322                            )
323    return experiment
324
325
326def main():
327    print("Running experiment with", sys.argv)
328    parsed_args = parseArguments()
329    if parsed_args.debug:
330        logging.basicConfig(level=logging.DEBUG)
331
332    if parsed_args.checkpoint_path is not None and os.path.exists(parsed_args.checkpoint_path):
333        experiment = load_experiment(parsed_args.checkpoint_path)
334    else:
335        experiment = create_experiment()
336        experiment.init()  # init is mandatory
337
338    experiment.run(parsed_args.generations)
339
340    # Next call for experiment.run(10) will do nothing. Parameter 10 specifies how many generations should be
341    # in one experiment. Previous call generated 10 generations.
342    # Example 1:
343    # experiment.init()
344    # experiment.run(10)
345    # experiment.run(12)
346    # #This will run for total of 12 generations
347    #
348    # Example 2
349    # experiment.init()
350    # experiment.run(10)
351    # experiment.init()
352    # experiment.run(10)
353    # # All work produced by first run will be "destroyed" by second init().
354
355
356
357if __name__ == '__main__':
358
359    main()
Note: See TracBrowser for help on using the repository browser.