1 | import argparse |
---|
2 | import os |
---|
3 | import sys |
---|
4 | from enum import Enum |
---|
5 | |
---|
6 | import numpy as np |
---|
7 | |
---|
8 | from FramsticksLib import FramsticksLib |
---|
9 | from evolalg.base.lambda_step import LambdaStep |
---|
10 | from evolalg.dissimilarity.frams_dissimilarity import FramsDissimilarity |
---|
11 | from evolalg.dissimilarity.levenshtein import LevenshteinDissimilarity |
---|
12 | from evolalg.experiment import Experiment |
---|
13 | from evolalg.fitness.fitness_step import FitnessStep |
---|
14 | from evolalg.mutation_cross.frams_cross_and_mutate import FramsCrossAndMutate |
---|
15 | from evolalg.population.frams_population import FramsPopulation |
---|
16 | from evolalg.repair.remove.field import FieldRemove |
---|
17 | from evolalg.repair.remove.remove import Remove |
---|
18 | from evolalg.selection.tournament import TournamentSelection |
---|
19 | from evolalg.statistics.halloffame_stats import HallOfFameStatistics |
---|
20 | from evolalg.statistics.statistics_deap import StatisticsDeap |
---|
21 | from evolalg.base.union_step import UnionStep |
---|
22 | from evolalg.utils.population_save import PopulationSave |
---|
23 | |
---|
24 | |
---|
25 | def ensureDir(string): |
---|
26 | if os.path.isdir(string): |
---|
27 | return string |
---|
28 | else: |
---|
29 | raise NotADirectoryError(string) |
---|
30 | |
---|
31 | |
---|
32 | class Dissim(Enum): |
---|
33 | levenshtein = "levenshtein" |
---|
34 | frams = "frams" |
---|
35 | |
---|
36 | def __str__(self): |
---|
37 | return self.name |
---|
38 | |
---|
39 | |
---|
40 | class Fitness(Enum): |
---|
41 | raw = "raw" |
---|
42 | niching = "niching" |
---|
43 | novelty = "novelty" |
---|
44 | |
---|
45 | def __str__(self): |
---|
46 | return self.name |
---|
47 | |
---|
48 | |
---|
49 | def parseArguments(): |
---|
50 | parser = argparse.ArgumentParser( |
---|
51 | description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[ |
---|
52 | 0]) |
---|
53 | parser.add_argument('-path', type=ensureDir, required=True, help='Path to Framsticks without trailing slash.') |
---|
54 | parser.add_argument('-opt', required=True, |
---|
55 | help='optimization criteria : vertpos, velocity, distance, vertvel, lifespan, numjoints, numparts, numneurons, numconnections. Single or multiple criteria.') |
---|
56 | parser.add_argument('-lib', required=False, help="Filename of .so or .dll with framsticks library") |
---|
57 | parser.add_argument('-genformat', required=False, default="1", |
---|
58 | help='Genetic format for the demo run, for example 4, 9, or B. If not given, f1 is assumed.') |
---|
59 | parser.add_argument('-sim', required=False, default="eval-allcriteria.sim", help="Name of .sim file") |
---|
60 | parser.add_argument('-dissim', required=False, type=Dissim, default=Dissim.frams, |
---|
61 | help=' Dissimilarity measure DEFAULT = frams', choices=list(Dissim)) |
---|
62 | parser.add_argument('-fit', required=False, default=Fitness.raw, type=Fitness, |
---|
63 | help=' Fitness criteria DEFAULT = raw', choices=list(Fitness)) |
---|
64 | parser.add_argument('-popsize', type=int, default=50, help="Size of population, default 50.") |
---|
65 | parser.add_argument('-num_parts', type=int, default=None, help="Maximum number of parts. Default None") |
---|
66 | parser.add_argument('-checkpoint_path', required=False, default=None, help="Path to checkpoint path") |
---|
67 | parser.add_argument('-checkpoint_interval', required=False, type=int, default=100, help="Checkpoint interval") |
---|
68 | return parser.parse_args() |
---|
69 | |
---|
70 | |
---|
71 | def extract_fitness(ind): |
---|
72 | return ind.fitness_raw |
---|
73 | |
---|
74 | |
---|
75 | def print_population_count(pop): |
---|
76 | print("Current:", len(pop)) |
---|
77 | return pop # Each step must return a population |
---|
78 | |
---|
79 | |
---|
80 | class NumPartsGreater(Remove): |
---|
81 | def __init__(self, numparts): |
---|
82 | super(NumPartsGreater, self).__init__() |
---|
83 | self.numparts = numparts |
---|
84 | |
---|
85 | def remove(self, individual): |
---|
86 | return individual.numparts > self.numparts |
---|
87 | |
---|
88 | |
---|
89 | def func_niching(ind): setattr(ind, "fitness", ind.fitness_raw * (1 + ind.dissim)) |
---|
90 | |
---|
91 | |
---|
92 | def func_raw(ind): setattr(ind, "fitness", ind.fitness_raw) |
---|
93 | |
---|
94 | |
---|
95 | def func_novelty(ind): setattr(ind, "fitness", ind.dissim) |
---|
96 | |
---|
97 | |
---|
98 | def main(): |
---|
99 | print("Running experiment with", sys.argv) |
---|
100 | parsed_args = parseArguments() |
---|
101 | frams = FramsticksLib(parsed_args.path, parsed_args.lib, |
---|
102 | parsed_args.sim) |
---|
103 | # Steps for generating first population |
---|
104 | init_stages = [FramsPopulation(frams, parsed_args.genformat, parsed_args.popsize)] |
---|
105 | |
---|
106 | # Selection procedure |
---|
107 | selection = TournamentSelection(5, copy=True) # 'fitness' by default, the targeted attribute can be changed, e.g. fit_attr="fitness_raw" |
---|
108 | |
---|
109 | # Procedure for generating new population. This steps will be run as long there is less than |
---|
110 | # popsize individuals in the new population |
---|
111 | new_generation_stages = [FramsCrossAndMutate(frams, cross_prob=0.2, mutate_prob=0.9)] |
---|
112 | |
---|
113 | # Steps after new population is created. Executed exacly once per generation. |
---|
114 | generation_modifications = [] |
---|
115 | |
---|
116 | # ------------------------------------------------- |
---|
117 | # Fitness |
---|
118 | |
---|
119 | fitness_raw = FitnessStep(frams, fields={parsed_args.opt: "fitness_raw", "numparts": "numparts"}, |
---|
120 | fields_defaults={parsed_args.opt: None, "numparts": float("inf")}, |
---|
121 | evaluation_count=1) |
---|
122 | |
---|
123 | fitness_end = FitnessStep(frams, fields={parsed_args.opt: "fitness_raw"}, |
---|
124 | fields_defaults={parsed_args.opt: None}, |
---|
125 | evaluation_count=100) # evaluate the contents of the last population 100 times (TODO replace this approach and evaluate HOF instead of the last population) |
---|
126 | # Remove |
---|
127 | remove = [] |
---|
128 | remove.append(FieldRemove("fitness_raw", None)) # Remove individuals if they have default value for fitness |
---|
129 | if parsed_args.num_parts is not None: |
---|
130 | # This could be also implemented by "LambdaRemove(lambda x: x.numparts > parsed_args.num_parts) |
---|
131 | # But this will not serialize in checkpoint. |
---|
132 | remove.append(NumPartsGreater(parsed_args.num_parts)) |
---|
133 | remove_step = UnionStep(remove) |
---|
134 | |
---|
135 | fitness_remove = UnionStep([fitness_raw, remove_step]) |
---|
136 | |
---|
137 | init_stages.append(fitness_remove) |
---|
138 | new_generation_stages.append(fitness_remove) |
---|
139 | |
---|
140 | # ------------------------------------------------- |
---|
141 | # Novelty or niching |
---|
142 | dissim = None |
---|
143 | if parsed_args.dissim == Dissim.levenshtein: |
---|
144 | dissim = LevenshteinDissimilarity(reduction="mean", output_field="dissim") |
---|
145 | elif parsed_args.dissim == Dissim.frams: |
---|
146 | dissim = FramsDissimilarity(frams, reduction="mean", output_field="dissim") |
---|
147 | |
---|
148 | if parsed_args.fit == Fitness.raw: |
---|
149 | # Fitness is equal to finess raw |
---|
150 | raw = LambdaStep(func_raw) |
---|
151 | init_stages.append(raw) |
---|
152 | new_generation_stages.append(raw) |
---|
153 | generation_modifications.append(raw) |
---|
154 | |
---|
155 | if parsed_args.fit == Fitness.niching: |
---|
156 | niching = UnionStep([ |
---|
157 | dissim, |
---|
158 | LambdaStep(func_niching) |
---|
159 | ]) |
---|
160 | init_stages.append(niching) |
---|
161 | new_generation_stages.append(niching) |
---|
162 | generation_modifications.append(niching) |
---|
163 | |
---|
164 | if parsed_args.fit == Fitness.novelty: |
---|
165 | novelty = UnionStep([ |
---|
166 | dissim, |
---|
167 | LambdaStep(func_novelty) |
---|
168 | ]) |
---|
169 | init_stages.append(novelty) |
---|
170 | new_generation_stages.append(novelty) |
---|
171 | generation_modifications.append(novelty) |
---|
172 | |
---|
173 | # ------------------------------------------------- |
---|
174 | # Statistics |
---|
175 | hall_of_fame = HallOfFameStatistics(100, "fitness_raw") # Wrapper for halloffamae |
---|
176 | statistics_deap = StatisticsDeap([ |
---|
177 | ("avg", np.mean), |
---|
178 | ("stddev", np.std), |
---|
179 | ("min", np.min), |
---|
180 | ("max", np.max) |
---|
181 | ], extract_fitness) # Wrapper for deap statistics |
---|
182 | |
---|
183 | statistics_union = UnionStep([ |
---|
184 | hall_of_fame, |
---|
185 | statistics_deap |
---|
186 | ]) # Union of two statistics steps. |
---|
187 | |
---|
188 | init_stages.append(statistics_union) |
---|
189 | generation_modifications.append(statistics_union) |
---|
190 | |
---|
191 | # ------------------------------------------------- |
---|
192 | # End stages: this will execute exacly once after all generations. |
---|
193 | end_stages = [ |
---|
194 | fitness_end, |
---|
195 | PopulationSave("halloffame.gen", provider=hall_of_fame.haloffame, fields={"genotype": "genotype", |
---|
196 | "fitness": "fitness_raw"})] |
---|
197 | # ...but custom fields can be added, e.g. "custom": "recording" |
---|
198 | |
---|
199 | # ------------------------------------------------- |
---|
200 | # Experiment creation |
---|
201 | |
---|
202 | experiment = Experiment(init_population=init_stages, |
---|
203 | selection=selection, |
---|
204 | new_generation_steps=new_generation_stages, |
---|
205 | generation_modification=generation_modifications, |
---|
206 | end_steps=end_stages, |
---|
207 | population_size=parsed_args.popsize, |
---|
208 | checkpoint_path=parsed_args.checkpoint_path, |
---|
209 | checkpoint_interval=parsed_args.checkpoint_interval |
---|
210 | ) |
---|
211 | experiment.init() # init is mandatory |
---|
212 | experiment.run(10) |
---|
213 | # Next call for experiment.run(10) will do nothing. Parameter 10 specifies how many generations should be |
---|
214 | # in one experiment. Previous call generated 10 generations. |
---|
215 | # Example 1: |
---|
216 | # experiment.init() |
---|
217 | # experiment.run(10) |
---|
218 | # experiment.run(12) |
---|
219 | # #This will run for total of 12 generations |
---|
220 | # |
---|
221 | # Example 2 |
---|
222 | # experiment.init() |
---|
223 | # experiment.run(10) |
---|
224 | # experiment.init() |
---|
225 | # experiment.run(10) |
---|
226 | # # All work produced by first run will be "destroyed" by second init(). |
---|
227 | |
---|
228 | for ind in hall_of_fame.haloffame: |
---|
229 | print("%g\t%s" % (ind.fitness, ind.genotype)) |
---|
230 | |
---|
231 | |
---|
232 | if __name__ == '__main__': |
---|
233 | main() |
---|