[1113] | 1 | import argparse |
---|
[1139] | 2 | import logging |
---|
[1113] | 3 | import os |
---|
[1128] | 4 | import pickle |
---|
[1113] | 5 | import sys |
---|
| 6 | from enum import Enum |
---|
| 7 | |
---|
| 8 | import numpy as np |
---|
| 9 | |
---|
| 10 | from FramsticksLib import FramsticksLib |
---|
| 11 | from evolalg.base.lambda_step import LambdaStep |
---|
[1128] | 12 | from evolalg.base.step import Step |
---|
[1113] | 13 | from evolalg.dissimilarity.frams_dissimilarity import FramsDissimilarity |
---|
| 14 | from evolalg.dissimilarity.levenshtein import LevenshteinDissimilarity |
---|
| 15 | from evolalg.experiment import Experiment |
---|
| 16 | from evolalg.fitness.fitness_step import FitnessStep |
---|
| 17 | from evolalg.mutation_cross.frams_cross_and_mutate import FramsCrossAndMutate |
---|
| 18 | from evolalg.population.frams_population import FramsPopulation |
---|
| 19 | from evolalg.repair.remove.field import FieldRemove |
---|
| 20 | from evolalg.repair.remove.remove import Remove |
---|
| 21 | from evolalg.selection.tournament import TournamentSelection |
---|
| 22 | from evolalg.statistics.halloffame_stats import HallOfFameStatistics |
---|
| 23 | from evolalg.statistics.statistics_deap import StatisticsDeap |
---|
| 24 | from evolalg.base.union_step import UnionStep |
---|
| 25 | from evolalg.utils.population_save import PopulationSave |
---|
| 26 | |
---|
| 27 | |
---|
| 28 | def ensureDir(string): |
---|
| 29 | if os.path.isdir(string): |
---|
| 30 | return string |
---|
| 31 | else: |
---|
| 32 | raise NotADirectoryError(string) |
---|
| 33 | |
---|
| 34 | |
---|
| 35 | class Dissim(Enum): |
---|
| 36 | levenshtein = "levenshtein" |
---|
| 37 | frams = "frams" |
---|
| 38 | |
---|
| 39 | def __str__(self): |
---|
| 40 | return self.name |
---|
| 41 | |
---|
| 42 | |
---|
| 43 | class Fitness(Enum): |
---|
| 44 | raw = "raw" |
---|
| 45 | niching = "niching" |
---|
| 46 | novelty = "novelty" |
---|
[1145] | 47 | knn_niching = "knn_niching" |
---|
| 48 | knn_novelty = "knn_novelty" |
---|
[1113] | 49 | |
---|
| 50 | def __str__(self): |
---|
| 51 | return self.name |
---|
| 52 | |
---|
| 53 | |
---|
| 54 | def parseArguments(): |
---|
| 55 | parser = argparse.ArgumentParser( |
---|
| 56 | description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[ |
---|
| 57 | 0]) |
---|
[1128] | 58 | parser.add_argument('-path', type=ensureDir, required=True, help='Path to the Framsticks library without trailing slash.') |
---|
[1113] | 59 | parser.add_argument('-opt', required=True, |
---|
[1145] | 60 | help='optimization criteria: vertpos, velocity, distance, vertvel, lifespan, numjoints, numparts, numneurons, numconnections (or other as long as it is provided by the .sim file and its .expdef). For multiple criteria optimization, see multicriteria.py.') |
---|
[1132] | 61 | parser.add_argument('-lib', required=False, help="Filename of .so or .dll with the Framsticks library") |
---|
[1139] | 62 | |
---|
[1113] | 63 | parser.add_argument('-genformat', required=False, default="1", |
---|
| 64 | help='Genetic format for the demo run, for example 4, 9, or B. If not given, f1 is assumed.') |
---|
[1149] | 65 | parser.add_argument('-sim', required=False, default="eval-allcriteria.sim", help="Name of the .sim file with all parameter values. If you want to provide more files, separate them with a semicolon ';'.") |
---|
[1139] | 66 | parser.add_argument('-fit', required=False, default=Fitness.raw, type=Fitness, |
---|
| 67 | help=' Fitness criteria, default: raw', choices=list(Fitness)) |
---|
[1113] | 68 | parser.add_argument('-dissim', required=False, type=Dissim, default=Dissim.frams, |
---|
[1139] | 69 | help='Dissimilarity measure, default: frams', choices=list(Dissim)) |
---|
[1145] | 70 | parser.add_argument('-knn', type=int, help="'k' value for knn-based fitness criteria (knn-niching and knn-novelty).") |
---|
[1139] | 71 | parser.add_argument('-popsize', type=int, default=50, help="Population size, default: 50.") |
---|
| 72 | parser.add_argument('-generations', type=int, default=5, help="Number of generations, default: 5.") |
---|
| 73 | parser.add_argument('-tournament', type=int, default=5, help="Tournament size, default: 5.") |
---|
[1138] | 74 | |
---|
| 75 | parser.add_argument('-max_numparts', type=int, default=None, help="Maximum number of Parts. Default: no limit") |
---|
| 76 | parser.add_argument('-max_numjoints', type=int, default=None, help="Maximum number of Joints. Default: no limit") |
---|
| 77 | parser.add_argument('-max_numneurons', type=int, default=None, help="Maximum number of Neurons. Default: no limit") |
---|
| 78 | parser.add_argument('-max_numconnections', type=int, default=None, help="Maximum number of Neural connections. Default: no limit") |
---|
| 79 | |
---|
[1140] | 80 | parser.add_argument('-hof_size', type=int, default=10, help="Number of genotypes in Hall of Fame. Default: 10.") |
---|
[1139] | 81 | parser.add_argument('-hof_evaluations', type=int, default=20, help="Number of final evaluations of each genotype in Hall of Fame to obtain reliable (averaged) fitness. Default: 20.") |
---|
[1128] | 82 | parser.add_argument('-checkpoint_path', required=False, default=None, help="Path to the checkpoint file") |
---|
[1113] | 83 | parser.add_argument('-checkpoint_interval', required=False, type=int, default=100, help="Checkpoint interval") |
---|
[1145] | 84 | parser.add_argument('-debug', dest='debug', action='store_true', help="Prints names of steps as they are executed") |
---|
[1139] | 85 | parser.set_defaults(debug=False) |
---|
[1113] | 86 | return parser.parse_args() |
---|
| 87 | |
---|
| 88 | |
---|
| 89 | def extract_fitness(ind): |
---|
| 90 | return ind.fitness_raw |
---|
| 91 | |
---|
| 92 | |
---|
| 93 | def print_population_count(pop): |
---|
[1136] | 94 | print("Current popsize:", len(pop)) |
---|
[1113] | 95 | return pop # Each step must return a population |
---|
| 96 | |
---|
| 97 | |
---|
[1138] | 98 | class NumPartsHigher(Remove): |
---|
| 99 | def __init__(self, max_number): |
---|
| 100 | super(NumPartsHigher, self).__init__() |
---|
| 101 | self.max_number = max_number |
---|
[1113] | 102 | |
---|
| 103 | def remove(self, individual): |
---|
[1138] | 104 | return individual.numparts > self.max_number |
---|
[1113] | 105 | |
---|
| 106 | |
---|
[1138] | 107 | class NumJointsHigher(Remove): |
---|
| 108 | def __init__(self, max_number): |
---|
| 109 | super(NumJointsHigher, self).__init__() |
---|
| 110 | self.max_number = max_number |
---|
| 111 | |
---|
| 112 | def remove(self, individual): |
---|
| 113 | return individual.numjoints > self.max_number |
---|
| 114 | |
---|
| 115 | |
---|
| 116 | class NumNeuronsHigher(Remove): |
---|
| 117 | def __init__(self, max_number): |
---|
| 118 | super(NumNeuronsHigher, self).__init__() |
---|
| 119 | self.max_number = max_number |
---|
| 120 | |
---|
| 121 | def remove(self, individual): |
---|
| 122 | return individual.numneurons > self.max_number |
---|
| 123 | |
---|
| 124 | |
---|
| 125 | class NumConnectionsHigher(Remove): |
---|
| 126 | def __init__(self, max_number): |
---|
| 127 | super(NumConnectionsHigher, self).__init__() |
---|
| 128 | self.max_number = max_number |
---|
| 129 | |
---|
| 130 | def remove(self, individual): |
---|
| 131 | return individual.numconnections > self.max_number |
---|
| 132 | |
---|
[1145] | 133 | |
---|
[1139] | 134 | class ReplaceWithHallOfFame(Step): |
---|
| 135 | def __init__(self, hof, *args, **kwargs): |
---|
| 136 | super(ReplaceWithHallOfFame, self).__init__(*args, **kwargs) |
---|
| 137 | self.hof = hof |
---|
| 138 | def call(self, population, *args, **kwargs): |
---|
| 139 | super(ReplaceWithHallOfFame, self).call(population) |
---|
| 140 | return list(self.hof.halloffame) |
---|
[1138] | 141 | |
---|
[1145] | 142 | |
---|
[1113] | 143 | def func_raw(ind): setattr(ind, "fitness", ind.fitness_raw) |
---|
| 144 | |
---|
| 145 | |
---|
| 146 | def func_novelty(ind): setattr(ind, "fitness", ind.dissim) |
---|
| 147 | |
---|
| 148 | |
---|
[1145] | 149 | def func_knn_novelty(ind): setattr(ind, "fitness", ind.dissim) |
---|
| 150 | |
---|
| 151 | |
---|
[1146] | 152 | def func_niching(ind): setattr(ind, "fitness", ind.fitness_raw * (1 + ind.dissim)) |
---|
| 153 | |
---|
| 154 | |
---|
[1145] | 155 | def func_knn_niching(ind): setattr(ind, "fitness", ind.fitness_raw * (1 + ind.dissim)) |
---|
| 156 | |
---|
| 157 | |
---|
[1128] | 158 | def load_experiment(path): |
---|
| 159 | with open(path, "rb") as file: |
---|
| 160 | experiment = pickle.load(file) |
---|
| 161 | print("Loaded experiment. Generation:", experiment.generation) |
---|
| 162 | return experiment |
---|
| 163 | |
---|
| 164 | |
---|
| 165 | def create_experiment(): |
---|
[1113] | 166 | parsed_args = parseArguments() |
---|
[1138] | 167 | frams_lib = FramsticksLib(parsed_args.path, parsed_args.lib, |
---|
[1149] | 168 | parsed_args.sim.split(";")) |
---|
[1113] | 169 | # Steps for generating first population |
---|
[1128] | 170 | init_stages = [ |
---|
[1138] | 171 | FramsPopulation(frams_lib, parsed_args.genformat, parsed_args.popsize) |
---|
[1128] | 172 | ] |
---|
[1113] | 173 | |
---|
| 174 | # Selection procedure |
---|
[1129] | 175 | selection = TournamentSelection(parsed_args.tournament, |
---|
[1128] | 176 | copy=True) # 'fitness' by default, the targeted attribute can be changed, e.g. fit_attr="fitness_raw" |
---|
[1113] | 177 | |
---|
| 178 | # Procedure for generating new population. This steps will be run as long there is less than |
---|
| 179 | # popsize individuals in the new population |
---|
[1138] | 180 | new_generation_stages = [FramsCrossAndMutate(frams_lib, cross_prob=0.2, mutate_prob=0.9)] |
---|
[1113] | 181 | |
---|
[1146] | 182 | # Steps after new population is created. Executed exactly once per generation. |
---|
[1113] | 183 | generation_modifications = [] |
---|
| 184 | |
---|
| 185 | # ------------------------------------------------- |
---|
| 186 | # Fitness |
---|
| 187 | |
---|
[1138] | 188 | fitness_raw = FitnessStep(frams_lib, fields={parsed_args.opt: "fitness_raw", |
---|
| 189 | "numparts": "numparts", |
---|
| 190 | "numjoints": "numjoints", |
---|
| 191 | "numneurons": "numneurons", |
---|
| 192 | "numconnections": "numconnections"}, |
---|
| 193 | fields_defaults={parsed_args.opt: None, "numparts": float("inf"), |
---|
| 194 | "numjoints": float("inf"), "numneurons": float("inf"), |
---|
| 195 | "numconnections": float("inf")}, |
---|
[1113] | 196 | evaluation_count=1) |
---|
| 197 | |
---|
[1139] | 198 | |
---|
[1138] | 199 | fitness_end = FitnessStep(frams_lib, fields={parsed_args.opt: "fitness_raw"}, |
---|
[1113] | 200 | fields_defaults={parsed_args.opt: None}, |
---|
[1139] | 201 | evaluation_count=parsed_args.hof_evaluations) |
---|
[1113] | 202 | # Remove |
---|
| 203 | remove = [] |
---|
| 204 | remove.append(FieldRemove("fitness_raw", None)) # Remove individuals if they have default value for fitness |
---|
[1138] | 205 | if parsed_args.max_numparts is not None: |
---|
| 206 | # This could be also implemented by "LambdaRemove(lambda x: x.numparts > parsed_args.num_parts)" |
---|
| 207 | # But this would not serialize in checkpoint. |
---|
| 208 | remove.append(NumPartsHigher(parsed_args.max_numparts)) |
---|
| 209 | if parsed_args.max_numjoints is not None: |
---|
| 210 | remove.append(NumJointsHigher(parsed_args.max_numjoints)) |
---|
| 211 | if parsed_args.max_numneurons is not None: |
---|
| 212 | remove.append(NumNeuronsHigher(parsed_args.max_numneurons)) |
---|
| 213 | if parsed_args.max_numconnections is not None: |
---|
| 214 | remove.append(NumConnectionsHigher(parsed_args.max_numconnections)) |
---|
| 215 | |
---|
[1113] | 216 | remove_step = UnionStep(remove) |
---|
| 217 | |
---|
| 218 | fitness_remove = UnionStep([fitness_raw, remove_step]) |
---|
| 219 | |
---|
| 220 | init_stages.append(fitness_remove) |
---|
| 221 | new_generation_stages.append(fitness_remove) |
---|
| 222 | |
---|
| 223 | # ------------------------------------------------- |
---|
| 224 | # Novelty or niching |
---|
[1145] | 225 | knn = parsed_args.knn |
---|
| 226 | if parsed_args.fit == Fitness.knn_novelty or parsed_args.fit == Fitness.knn_niching: |
---|
| 227 | reduction_method = "knn_mean" |
---|
| 228 | assert knn is not None, "'k' must be set for knn-based fitness." |
---|
| 229 | assert knn > 0, "'k' must be positive." |
---|
| 230 | assert knn < parsed_args.popsize, "'k' must be smaller than population size." |
---|
| 231 | else: |
---|
| 232 | reduction_method = "mean" |
---|
| 233 | assert knn is None, "'k' is irrelevant unless knn-based fitness is used." |
---|
| 234 | |
---|
[1113] | 235 | dissim = None |
---|
| 236 | if parsed_args.dissim == Dissim.levenshtein: |
---|
[1145] | 237 | dissim = LevenshteinDissimilarity(reduction=reduction_method, knn=knn, output_field="dissim") |
---|
[1113] | 238 | elif parsed_args.dissim == Dissim.frams: |
---|
[1145] | 239 | dissim = FramsDissimilarity(frams_lib, reduction=reduction_method, knn=knn, output_field="dissim") |
---|
[1113] | 240 | |
---|
| 241 | if parsed_args.fit == Fitness.raw: |
---|
| 242 | # Fitness is equal to finess raw |
---|
| 243 | raw = LambdaStep(func_raw) |
---|
| 244 | init_stages.append(raw) |
---|
| 245 | generation_modifications.append(raw) |
---|
| 246 | |
---|
[1146] | 247 | if parsed_args.fit == Fitness.niching: # TODO reduce redundancy in the four cases below: dictionary? |
---|
[1113] | 248 | niching = UnionStep([ |
---|
| 249 | dissim, |
---|
| 250 | LambdaStep(func_niching) |
---|
| 251 | ]) |
---|
| 252 | init_stages.append(niching) |
---|
| 253 | generation_modifications.append(niching) |
---|
| 254 | |
---|
| 255 | if parsed_args.fit == Fitness.novelty: |
---|
| 256 | novelty = UnionStep([ |
---|
| 257 | dissim, |
---|
| 258 | LambdaStep(func_novelty) |
---|
| 259 | ]) |
---|
| 260 | init_stages.append(novelty) |
---|
| 261 | generation_modifications.append(novelty) |
---|
[1145] | 262 | |
---|
| 263 | if parsed_args.fit == Fitness.knn_niching: |
---|
| 264 | knn_niching = UnionStep([ |
---|
| 265 | dissim, |
---|
| 266 | LambdaStep(func_knn_niching) |
---|
| 267 | ]) |
---|
| 268 | init_stages.append(knn_niching) |
---|
| 269 | generation_modifications.append(knn_niching) |
---|
| 270 | |
---|
| 271 | if parsed_args.fit == Fitness.knn_novelty: |
---|
| 272 | knn_novelty = UnionStep([ |
---|
| 273 | dissim, |
---|
| 274 | LambdaStep(func_knn_novelty) |
---|
| 275 | ]) |
---|
| 276 | init_stages.append(knn_novelty) |
---|
| 277 | generation_modifications.append(knn_novelty) |
---|
[1113] | 278 | |
---|
| 279 | # ------------------------------------------------- |
---|
| 280 | # Statistics |
---|
[1140] | 281 | hall_of_fame = HallOfFameStatistics(parsed_args.hof_size, "fitness_raw") # Wrapper for halloffamae |
---|
[1139] | 282 | replace_with_hof = ReplaceWithHallOfFame(hall_of_fame) |
---|
[1113] | 283 | statistics_deap = StatisticsDeap([ |
---|
| 284 | ("avg", np.mean), |
---|
| 285 | ("stddev", np.std), |
---|
| 286 | ("min", np.min), |
---|
| 287 | ("max", np.max) |
---|
| 288 | ], extract_fitness) # Wrapper for deap statistics |
---|
| 289 | |
---|
| 290 | statistics_union = UnionStep([ |
---|
| 291 | hall_of_fame, |
---|
| 292 | statistics_deap |
---|
| 293 | ]) # Union of two statistics steps. |
---|
| 294 | |
---|
| 295 | init_stages.append(statistics_union) |
---|
| 296 | generation_modifications.append(statistics_union) |
---|
| 297 | |
---|
| 298 | # ------------------------------------------------- |
---|
[1146] | 299 | # End stages: this will execute exactly once after all generations. |
---|
[1113] | 300 | end_stages = [ |
---|
[1139] | 301 | replace_with_hof, |
---|
[1113] | 302 | fitness_end, |
---|
[1128] | 303 | PopulationSave("halloffame.gen", provider=hall_of_fame.halloffame, fields={"genotype": "genotype", |
---|
| 304 | "fitness": "fitness_raw"})] |
---|
[1113] | 305 | # ...but custom fields can be added, e.g. "custom": "recording" |
---|
| 306 | |
---|
| 307 | # ------------------------------------------------- |
---|
[1139] | 308 | |
---|
| 309 | |
---|
| 310 | |
---|
[1113] | 311 | # Experiment creation |
---|
| 312 | |
---|
[1139] | 313 | |
---|
[1113] | 314 | experiment = Experiment(init_population=init_stages, |
---|
| 315 | selection=selection, |
---|
| 316 | new_generation_steps=new_generation_stages, |
---|
| 317 | generation_modification=generation_modifications, |
---|
| 318 | end_steps=end_stages, |
---|
| 319 | population_size=parsed_args.popsize, |
---|
| 320 | checkpoint_path=parsed_args.checkpoint_path, |
---|
| 321 | checkpoint_interval=parsed_args.checkpoint_interval |
---|
| 322 | ) |
---|
[1128] | 323 | return experiment |
---|
| 324 | |
---|
| 325 | |
---|
| 326 | def main(): |
---|
| 327 | print("Running experiment with", sys.argv) |
---|
| 328 | parsed_args = parseArguments() |
---|
[1139] | 329 | if parsed_args.debug: |
---|
| 330 | logging.basicConfig(level=logging.DEBUG) |
---|
[1128] | 331 | |
---|
[1136] | 332 | if parsed_args.checkpoint_path is not None and os.path.exists(parsed_args.checkpoint_path): |
---|
[1128] | 333 | experiment = load_experiment(parsed_args.checkpoint_path) |
---|
| 334 | else: |
---|
| 335 | experiment = create_experiment() |
---|
| 336 | experiment.init() # init is mandatory |
---|
| 337 | |
---|
| 338 | experiment.run(parsed_args.generations) |
---|
| 339 | |
---|
[1113] | 340 | # Next call for experiment.run(10) will do nothing. Parameter 10 specifies how many generations should be |
---|
| 341 | # in one experiment. Previous call generated 10 generations. |
---|
| 342 | # Example 1: |
---|
| 343 | # experiment.init() |
---|
| 344 | # experiment.run(10) |
---|
| 345 | # experiment.run(12) |
---|
| 346 | # #This will run for total of 12 generations |
---|
| 347 | # |
---|
| 348 | # Example 2 |
---|
| 349 | # experiment.init() |
---|
| 350 | # experiment.run(10) |
---|
| 351 | # experiment.init() |
---|
| 352 | # experiment.run(10) |
---|
| 353 | # # All work produced by first run will be "destroyed" by second init(). |
---|
| 354 | |
---|
| 355 | |
---|
| 356 | |
---|
| 357 | if __name__ == '__main__': |
---|
[1139] | 358 | |
---|
[1113] | 359 | main() |
---|