[1113] | 1 | import argparse |
---|
[1139] | 2 | import logging |
---|
[1113] | 3 | import os |
---|
[1128] | 4 | import pickle |
---|
[1113] | 5 | import sys |
---|
| 6 | from enum import Enum |
---|
| 7 | |
---|
| 8 | import numpy as np |
---|
| 9 | |
---|
| 10 | from FramsticksLib import FramsticksLib |
---|
| 11 | from evolalg.base.lambda_step import LambdaStep |
---|
[1128] | 12 | from evolalg.base.step import Step |
---|
[1113] | 13 | from evolalg.dissimilarity.frams_dissimilarity import FramsDissimilarity |
---|
| 14 | from evolalg.dissimilarity.levenshtein import LevenshteinDissimilarity |
---|
| 15 | from evolalg.experiment import Experiment |
---|
| 16 | from evolalg.fitness.fitness_step import FitnessStep |
---|
| 17 | from evolalg.mutation_cross.frams_cross_and_mutate import FramsCrossAndMutate |
---|
| 18 | from evolalg.population.frams_population import FramsPopulation |
---|
| 19 | from evolalg.repair.remove.field import FieldRemove |
---|
| 20 | from evolalg.repair.remove.remove import Remove |
---|
| 21 | from evolalg.selection.tournament import TournamentSelection |
---|
| 22 | from evolalg.statistics.halloffame_stats import HallOfFameStatistics |
---|
| 23 | from evolalg.statistics.statistics_deap import StatisticsDeap |
---|
| 24 | from evolalg.base.union_step import UnionStep |
---|
[1139] | 25 | from evolalg.utils.name_propagation import propagate_names |
---|
[1113] | 26 | from evolalg.utils.population_save import PopulationSave |
---|
[1128] | 27 | import time |
---|
[1113] | 28 | |
---|
| 29 | |
---|
| 30 | def ensureDir(string): |
---|
| 31 | if os.path.isdir(string): |
---|
| 32 | return string |
---|
| 33 | else: |
---|
| 34 | raise NotADirectoryError(string) |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | class Dissim(Enum): |
---|
| 38 | levenshtein = "levenshtein" |
---|
| 39 | frams = "frams" |
---|
| 40 | |
---|
| 41 | def __str__(self): |
---|
| 42 | return self.name |
---|
| 43 | |
---|
| 44 | |
---|
| 45 | class Fitness(Enum): |
---|
| 46 | raw = "raw" |
---|
| 47 | niching = "niching" |
---|
| 48 | novelty = "novelty" |
---|
| 49 | |
---|
| 50 | def __str__(self): |
---|
| 51 | return self.name |
---|
| 52 | |
---|
| 53 | |
---|
| 54 | def parseArguments(): |
---|
| 55 | parser = argparse.ArgumentParser( |
---|
| 56 | description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[ |
---|
| 57 | 0]) |
---|
[1128] | 58 | parser.add_argument('-path', type=ensureDir, required=True, help='Path to the Framsticks library without trailing slash.') |
---|
[1113] | 59 | parser.add_argument('-opt', required=True, |
---|
[1132] | 60 | help='optimization criteria : vertpos, velocity, distance, vertvel, lifespan, numjoints, numparts, numneurons, numconnections (or other as long as it is provided by the .sim file and its .expdef). Single or multiple criteria.') |
---|
| 61 | parser.add_argument('-lib', required=False, help="Filename of .so or .dll with the Framsticks library") |
---|
[1139] | 62 | |
---|
[1113] | 63 | parser.add_argument('-genformat', required=False, default="1", |
---|
| 64 | help='Genetic format for the demo run, for example 4, 9, or B. If not given, f1 is assumed.') |
---|
[1132] | 65 | parser.add_argument('-sim', required=False, default="eval-allcriteria.sim", help="Name of the .sim file with all parameter values") |
---|
[1139] | 66 | parser.add_argument('-fit', required=False, default=Fitness.raw, type=Fitness, |
---|
| 67 | help=' Fitness criteria, default: raw', choices=list(Fitness)) |
---|
[1113] | 68 | parser.add_argument('-dissim', required=False, type=Dissim, default=Dissim.frams, |
---|
[1139] | 69 | help='Dissimilarity measure, default: frams', choices=list(Dissim)) |
---|
| 70 | parser.add_argument('-popsize', type=int, default=50, help="Population size, default: 50.") |
---|
| 71 | parser.add_argument('-generations', type=int, default=5, help="Number of generations, default: 5.") |
---|
| 72 | parser.add_argument('-tournament', type=int, default=5, help="Tournament size, default: 5.") |
---|
[1138] | 73 | |
---|
| 74 | parser.add_argument('-max_numparts', type=int, default=None, help="Maximum number of Parts. Default: no limit") |
---|
| 75 | parser.add_argument('-max_numjoints', type=int, default=None, help="Maximum number of Joints. Default: no limit") |
---|
| 76 | parser.add_argument('-max_numneurons', type=int, default=None, help="Maximum number of Neurons. Default: no limit") |
---|
| 77 | parser.add_argument('-max_numconnections', type=int, default=None, help="Maximum number of Neural connections. Default: no limit") |
---|
| 78 | |
---|
[1140] | 79 | parser.add_argument('-hof_size', type=int, default=10, help="Number of genotypes in Hall of Fame. Default: 10.") |
---|
[1139] | 80 | parser.add_argument('-hof_evaluations', type=int, default=20, help="Number of final evaluations of each genotype in Hall of Fame to obtain reliable (averaged) fitness. Default: 20.") |
---|
[1128] | 81 | parser.add_argument('-checkpoint_path', required=False, default=None, help="Path to the checkpoint file") |
---|
[1113] | 82 | parser.add_argument('-checkpoint_interval', required=False, type=int, default=100, help="Checkpoint interval") |
---|
[1139] | 83 | parser.add_argument('--debug', dest='debug', action='store_true', help="Prints names of steps as they are executed") |
---|
| 84 | parser.set_defaults(debug=False) |
---|
[1113] | 85 | return parser.parse_args() |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | def extract_fitness(ind): |
---|
| 89 | return ind.fitness_raw |
---|
| 90 | |
---|
| 91 | |
---|
| 92 | def print_population_count(pop): |
---|
[1136] | 93 | print("Current popsize:", len(pop)) |
---|
[1113] | 94 | return pop # Each step must return a population |
---|
| 95 | |
---|
| 96 | |
---|
[1138] | 97 | class NumPartsHigher(Remove): |
---|
| 98 | def __init__(self, max_number): |
---|
| 99 | super(NumPartsHigher, self).__init__() |
---|
| 100 | self.max_number = max_number |
---|
[1113] | 101 | |
---|
| 102 | def remove(self, individual): |
---|
[1138] | 103 | return individual.numparts > self.max_number |
---|
[1113] | 104 | |
---|
| 105 | |
---|
[1138] | 106 | class NumJointsHigher(Remove): |
---|
| 107 | def __init__(self, max_number): |
---|
| 108 | super(NumJointsHigher, self).__init__() |
---|
| 109 | self.max_number = max_number |
---|
| 110 | |
---|
| 111 | def remove(self, individual): |
---|
| 112 | return individual.numjoints > self.max_number |
---|
| 113 | |
---|
| 114 | |
---|
| 115 | class NumNeuronsHigher(Remove): |
---|
| 116 | def __init__(self, max_number): |
---|
| 117 | super(NumNeuronsHigher, self).__init__() |
---|
| 118 | self.max_number = max_number |
---|
| 119 | |
---|
| 120 | def remove(self, individual): |
---|
| 121 | return individual.numneurons > self.max_number |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | class NumConnectionsHigher(Remove): |
---|
| 125 | def __init__(self, max_number): |
---|
| 126 | super(NumConnectionsHigher, self).__init__() |
---|
| 127 | self.max_number = max_number |
---|
| 128 | |
---|
| 129 | def remove(self, individual): |
---|
| 130 | return individual.numconnections > self.max_number |
---|
| 131 | |
---|
[1139] | 132 | class ReplaceWithHallOfFame(Step): |
---|
| 133 | def __init__(self, hof, *args, **kwargs): |
---|
| 134 | super(ReplaceWithHallOfFame, self).__init__(*args, **kwargs) |
---|
| 135 | self.hof = hof |
---|
| 136 | def call(self, population, *args, **kwargs): |
---|
| 137 | super(ReplaceWithHallOfFame, self).call(population) |
---|
| 138 | return list(self.hof.halloffame) |
---|
[1138] | 139 | |
---|
[1113] | 140 | def func_niching(ind): setattr(ind, "fitness", ind.fitness_raw * (1 + ind.dissim)) |
---|
| 141 | |
---|
| 142 | |
---|
| 143 | def func_raw(ind): setattr(ind, "fitness", ind.fitness_raw) |
---|
| 144 | |
---|
| 145 | |
---|
| 146 | def func_novelty(ind): setattr(ind, "fitness", ind.dissim) |
---|
| 147 | |
---|
| 148 | |
---|
[1128] | 149 | def load_experiment(path): |
---|
| 150 | with open(path, "rb") as file: |
---|
| 151 | experiment = pickle.load(file) |
---|
| 152 | print("Loaded experiment. Generation:", experiment.generation) |
---|
| 153 | return experiment |
---|
| 154 | |
---|
| 155 | |
---|
| 156 | def create_experiment(): |
---|
[1113] | 157 | parsed_args = parseArguments() |
---|
[1138] | 158 | frams_lib = FramsticksLib(parsed_args.path, parsed_args.lib, |
---|
[1113] | 159 | parsed_args.sim) |
---|
| 160 | # Steps for generating first population |
---|
[1128] | 161 | init_stages = [ |
---|
[1138] | 162 | FramsPopulation(frams_lib, parsed_args.genformat, parsed_args.popsize) |
---|
[1128] | 163 | ] |
---|
[1113] | 164 | |
---|
| 165 | # Selection procedure |
---|
[1129] | 166 | selection = TournamentSelection(parsed_args.tournament, |
---|
[1128] | 167 | copy=True) # 'fitness' by default, the targeted attribute can be changed, e.g. fit_attr="fitness_raw" |
---|
[1113] | 168 | |
---|
| 169 | # Procedure for generating new population. This steps will be run as long there is less than |
---|
| 170 | # popsize individuals in the new population |
---|
[1138] | 171 | new_generation_stages = [FramsCrossAndMutate(frams_lib, cross_prob=0.2, mutate_prob=0.9)] |
---|
[1113] | 172 | |
---|
| 173 | # Steps after new population is created. Executed exacly once per generation. |
---|
| 174 | generation_modifications = [] |
---|
| 175 | |
---|
| 176 | # ------------------------------------------------- |
---|
| 177 | # Fitness |
---|
| 178 | |
---|
[1138] | 179 | fitness_raw = FitnessStep(frams_lib, fields={parsed_args.opt: "fitness_raw", |
---|
| 180 | "numparts": "numparts", |
---|
| 181 | "numjoints": "numjoints", |
---|
| 182 | "numneurons": "numneurons", |
---|
| 183 | "numconnections": "numconnections"}, |
---|
| 184 | fields_defaults={parsed_args.opt: None, "numparts": float("inf"), |
---|
| 185 | "numjoints": float("inf"), "numneurons": float("inf"), |
---|
| 186 | "numconnections": float("inf")}, |
---|
[1113] | 187 | evaluation_count=1) |
---|
| 188 | |
---|
[1139] | 189 | |
---|
[1138] | 190 | fitness_end = FitnessStep(frams_lib, fields={parsed_args.opt: "fitness_raw"}, |
---|
[1113] | 191 | fields_defaults={parsed_args.opt: None}, |
---|
[1139] | 192 | evaluation_count=parsed_args.hof_evaluations) |
---|
[1113] | 193 | # Remove |
---|
| 194 | remove = [] |
---|
| 195 | remove.append(FieldRemove("fitness_raw", None)) # Remove individuals if they have default value for fitness |
---|
[1138] | 196 | if parsed_args.max_numparts is not None: |
---|
| 197 | # This could be also implemented by "LambdaRemove(lambda x: x.numparts > parsed_args.num_parts)" |
---|
| 198 | # But this would not serialize in checkpoint. |
---|
| 199 | remove.append(NumPartsHigher(parsed_args.max_numparts)) |
---|
| 200 | if parsed_args.max_numjoints is not None: |
---|
| 201 | remove.append(NumJointsHigher(parsed_args.max_numjoints)) |
---|
| 202 | if parsed_args.max_numneurons is not None: |
---|
| 203 | remove.append(NumNeuronsHigher(parsed_args.max_numneurons)) |
---|
| 204 | if parsed_args.max_numconnections is not None: |
---|
| 205 | remove.append(NumConnectionsHigher(parsed_args.max_numconnections)) |
---|
| 206 | |
---|
[1113] | 207 | remove_step = UnionStep(remove) |
---|
| 208 | |
---|
| 209 | fitness_remove = UnionStep([fitness_raw, remove_step]) |
---|
| 210 | |
---|
| 211 | init_stages.append(fitness_remove) |
---|
| 212 | new_generation_stages.append(fitness_remove) |
---|
| 213 | |
---|
| 214 | # ------------------------------------------------- |
---|
| 215 | # Novelty or niching |
---|
| 216 | dissim = None |
---|
| 217 | if parsed_args.dissim == Dissim.levenshtein: |
---|
| 218 | dissim = LevenshteinDissimilarity(reduction="mean", output_field="dissim") |
---|
| 219 | elif parsed_args.dissim == Dissim.frams: |
---|
[1138] | 220 | dissim = FramsDissimilarity(frams_lib, reduction="mean", output_field="dissim") |
---|
[1113] | 221 | |
---|
| 222 | if parsed_args.fit == Fitness.raw: |
---|
| 223 | # Fitness is equal to finess raw |
---|
| 224 | raw = LambdaStep(func_raw) |
---|
| 225 | init_stages.append(raw) |
---|
| 226 | generation_modifications.append(raw) |
---|
| 227 | |
---|
| 228 | if parsed_args.fit == Fitness.niching: |
---|
| 229 | niching = UnionStep([ |
---|
| 230 | dissim, |
---|
| 231 | LambdaStep(func_niching) |
---|
| 232 | ]) |
---|
| 233 | init_stages.append(niching) |
---|
| 234 | generation_modifications.append(niching) |
---|
| 235 | |
---|
| 236 | if parsed_args.fit == Fitness.novelty: |
---|
| 237 | novelty = UnionStep([ |
---|
| 238 | dissim, |
---|
| 239 | LambdaStep(func_novelty) |
---|
| 240 | ]) |
---|
| 241 | init_stages.append(novelty) |
---|
| 242 | generation_modifications.append(novelty) |
---|
| 243 | |
---|
| 244 | # ------------------------------------------------- |
---|
| 245 | # Statistics |
---|
[1140] | 246 | hall_of_fame = HallOfFameStatistics(parsed_args.hof_size, "fitness_raw") # Wrapper for halloffamae |
---|
[1139] | 247 | replace_with_hof = ReplaceWithHallOfFame(hall_of_fame) |
---|
[1113] | 248 | statistics_deap = StatisticsDeap([ |
---|
| 249 | ("avg", np.mean), |
---|
| 250 | ("stddev", np.std), |
---|
| 251 | ("min", np.min), |
---|
| 252 | ("max", np.max) |
---|
| 253 | ], extract_fitness) # Wrapper for deap statistics |
---|
| 254 | |
---|
| 255 | statistics_union = UnionStep([ |
---|
| 256 | hall_of_fame, |
---|
| 257 | statistics_deap |
---|
| 258 | ]) # Union of two statistics steps. |
---|
| 259 | |
---|
| 260 | init_stages.append(statistics_union) |
---|
| 261 | generation_modifications.append(statistics_union) |
---|
| 262 | |
---|
| 263 | # ------------------------------------------------- |
---|
| 264 | # End stages: this will execute exacly once after all generations. |
---|
| 265 | end_stages = [ |
---|
[1139] | 266 | replace_with_hof, |
---|
[1113] | 267 | fitness_end, |
---|
[1128] | 268 | PopulationSave("halloffame.gen", provider=hall_of_fame.halloffame, fields={"genotype": "genotype", |
---|
| 269 | "fitness": "fitness_raw"})] |
---|
[1113] | 270 | # ...but custom fields can be added, e.g. "custom": "recording" |
---|
| 271 | |
---|
| 272 | # ------------------------------------------------- |
---|
[1139] | 273 | |
---|
| 274 | |
---|
| 275 | |
---|
[1113] | 276 | # Experiment creation |
---|
| 277 | |
---|
[1139] | 278 | |
---|
[1113] | 279 | experiment = Experiment(init_population=init_stages, |
---|
| 280 | selection=selection, |
---|
| 281 | new_generation_steps=new_generation_stages, |
---|
| 282 | generation_modification=generation_modifications, |
---|
| 283 | end_steps=end_stages, |
---|
| 284 | population_size=parsed_args.popsize, |
---|
| 285 | checkpoint_path=parsed_args.checkpoint_path, |
---|
| 286 | checkpoint_interval=parsed_args.checkpoint_interval |
---|
| 287 | ) |
---|
[1128] | 288 | return experiment |
---|
| 289 | |
---|
| 290 | |
---|
| 291 | def main(): |
---|
| 292 | print("Running experiment with", sys.argv) |
---|
| 293 | parsed_args = parseArguments() |
---|
[1139] | 294 | if parsed_args.debug: |
---|
| 295 | logging.basicConfig(level=logging.DEBUG) |
---|
[1128] | 296 | |
---|
[1136] | 297 | if parsed_args.checkpoint_path is not None and os.path.exists(parsed_args.checkpoint_path): |
---|
[1128] | 298 | experiment = load_experiment(parsed_args.checkpoint_path) |
---|
| 299 | FramsticksLib(parsed_args.path, parsed_args.lib, |
---|
| 300 | parsed_args.sim) |
---|
| 301 | else: |
---|
| 302 | experiment = create_experiment() |
---|
| 303 | experiment.init() # init is mandatory |
---|
| 304 | |
---|
| 305 | |
---|
| 306 | experiment.run(parsed_args.generations) |
---|
| 307 | |
---|
[1113] | 308 | # Next call for experiment.run(10) will do nothing. Parameter 10 specifies how many generations should be |
---|
| 309 | # in one experiment. Previous call generated 10 generations. |
---|
| 310 | # Example 1: |
---|
| 311 | # experiment.init() |
---|
| 312 | # experiment.run(10) |
---|
| 313 | # experiment.run(12) |
---|
| 314 | # #This will run for total of 12 generations |
---|
| 315 | # |
---|
| 316 | # Example 2 |
---|
| 317 | # experiment.init() |
---|
| 318 | # experiment.run(10) |
---|
| 319 | # experiment.init() |
---|
| 320 | # experiment.run(10) |
---|
| 321 | # # All work produced by first run will be "destroyed" by second init(). |
---|
| 322 | |
---|
| 323 | |
---|
| 324 | |
---|
| 325 | if __name__ == '__main__': |
---|
[1139] | 326 | |
---|
[1113] | 327 | main() |
---|