[1147] | 1 | #TODO hof should be the complete non-dominated set from the entire process of evolution (all evaluated individuals), not limited in any way (remove '-hof_size'). Now we are not storing the entire Pareto front, but individuals that were better than others in hof [better=on all criteria?] at the time of inserting to hof. Hof has a size limit. |
---|
| 2 | #TODO when -dissim is used, print its statistics just like all other criteria |
---|
| 3 | #TODO in statistics, do not print "gen" (generation number) for each criterion |
---|
| 4 | #TODO if possible, when saving the final .gen file, instead of fitness as a python tuple, save individual criteria - so instead of fitness:(0.005251036058321138, 0.025849976588613266), write "velocity:...\nvertpos:..." (this also applies to other .py examples in this directory) |
---|
| 5 | |
---|
| 6 | |
---|
| 7 | import argparse |
---|
| 8 | import logging |
---|
| 9 | import os |
---|
| 10 | import pickle |
---|
| 11 | import sys |
---|
| 12 | import copy |
---|
| 13 | from enum import Enum |
---|
| 14 | |
---|
| 15 | import numpy as np |
---|
| 16 | |
---|
| 17 | from deap import base |
---|
| 18 | from deap import tools |
---|
| 19 | |
---|
| 20 | from FramsticksLib import FramsticksLib |
---|
| 21 | from evolalg.base.lambda_step import LambdaStep |
---|
| 22 | from evolalg.base.step import Step |
---|
| 23 | from evolalg.dissimilarity.frams_dissimilarity import FramsDissimilarity |
---|
| 24 | from evolalg.dissimilarity.levenshtein import LevenshteinDissimilarity |
---|
| 25 | from evolalg.experiment import Experiment |
---|
| 26 | from evolalg.fitness.fitness_step import FitnessStep |
---|
| 27 | from evolalg.mutation_cross.frams_cross_and_mutate import FramsCrossAndMutate |
---|
| 28 | from evolalg.population.frams_population import FramsPopulation |
---|
| 29 | from evolalg.repair.remove.field import FieldRemove |
---|
| 30 | from evolalg.repair.remove.remove import Remove |
---|
| 31 | from evolalg.selection.nsga2 import NSGA2Selection |
---|
| 32 | from evolalg.statistics.halloffame_stats import HallOfFameStatistics |
---|
| 33 | from evolalg.statistics.multistatistics_deap import MultiStatistics |
---|
| 34 | from evolalg.statistics.statistics_deap import StatisticsDeap |
---|
| 35 | from evolalg.base.union_step import UnionStep |
---|
| 36 | from evolalg.utils.population_save import PopulationSave |
---|
| 37 | |
---|
| 38 | |
---|
| 39 | def ensureDir(string): |
---|
| 40 | if os.path.isdir(string): |
---|
| 41 | return string |
---|
| 42 | else: |
---|
| 43 | raise NotADirectoryError(string) |
---|
| 44 | |
---|
| 45 | |
---|
| 46 | class Dissim(Enum): |
---|
| 47 | levenshtein = "levenshtein" |
---|
| 48 | frams = "frams" |
---|
| 49 | |
---|
| 50 | def __str__(self): |
---|
| 51 | return self.name |
---|
| 52 | |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | def parseArguments(): |
---|
| 56 | parser = argparse.ArgumentParser( |
---|
| 57 | description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[ |
---|
| 58 | 0]) |
---|
| 59 | parser.add_argument('-path', type=ensureDir, required=True, |
---|
| 60 | help='Path to the Framsticks library without trailing slash.') |
---|
| 61 | parser.add_argument('-opt', required=True, |
---|
| 62 | help='optimization criteria seperated with a comma: vertpos, velocity, distance, vertvel, lifespan, numjoints, numparts, numneurons, numconnections (and others as long as they are provided by the .sim file and its .expdef). Single or multiple criteria.') |
---|
| 63 | parser.add_argument('-lib', required=False, help="Filename of .so or .dll with the Framsticks library") |
---|
| 64 | |
---|
| 65 | parser.add_argument('-genformat', required=False, default="1", |
---|
| 66 | help='Genetic format for the demo run, for example 4, 9, or B. If not given, f1 is assumed.') |
---|
| 67 | parser.add_argument('-sim', required=False, default="eval-allcriteria.sim", |
---|
[1149] | 68 | help="Name of the .sim file with all parameter values. If you want to provide more files, separate them with a semicolon ';'.") |
---|
[1147] | 69 | parser.add_argument('-dissim', required=False, type=Dissim, default=Dissim.frams, |
---|
| 70 | help='Dissimilarity measure, default: frams', choices=list(Dissim)) |
---|
| 71 | parser.add_argument('-popsize', type=int, default=40, help="Population size (must be a multiple of 4), default: 40.") # mod 4 because of DEAP |
---|
| 72 | parser.add_argument('-generations', type=int, default=5, help="Number of generations, default: 5.") |
---|
| 73 | |
---|
| 74 | parser.add_argument('-max_numparts', type=int, default=None, help="Maximum number of Parts. Default: no limit") |
---|
| 75 | parser.add_argument('-max_numjoints', type=int, default=None, help="Maximum number of Joints. Default: no limit") |
---|
| 76 | parser.add_argument('-max_numneurons', type=int, default=None, help="Maximum number of Neurons. Default: no limit") |
---|
| 77 | parser.add_argument('-max_numconnections', type=int, default=None, |
---|
| 78 | help="Maximum number of Neural connections. Default: no limit") |
---|
| 79 | |
---|
| 80 | parser.add_argument('-hof_size', type=int, default=10, help="Number of genotypes in Hall of Fame. Default: 10.") |
---|
| 81 | parser.add_argument('-hof_evaluations', type=int, default=20, |
---|
| 82 | help="Number of final evaluations of each genotype in Hall of Fame to obtain reliable (averaged) fitness. Default: 20.") |
---|
| 83 | parser.add_argument('-checkpoint_path', required=False, default=None, help="Path to the checkpoint file") |
---|
| 84 | parser.add_argument('-checkpoint_interval', required=False, type=int, default=100, help="Checkpoint interval") |
---|
| 85 | parser.add_argument('-debug', dest='debug', action='store_true', help="Prints names of steps as they are executed") |
---|
| 86 | parser.set_defaults(debug=False) |
---|
| 87 | return parser.parse_args() |
---|
| 88 | |
---|
| 89 | |
---|
| 90 | class NumPartsHigher(Remove): |
---|
| 91 | def __init__(self, max_number): |
---|
| 92 | super(NumPartsHigher, self).__init__() |
---|
| 93 | self.max_number = max_number |
---|
| 94 | |
---|
| 95 | def remove(self, individual): |
---|
| 96 | return individual.numparts > self.max_number |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | class NumJointsHigher(Remove): |
---|
| 100 | def __init__(self, max_number): |
---|
| 101 | super(NumJointsHigher, self).__init__() |
---|
| 102 | self.max_number = max_number |
---|
| 103 | |
---|
| 104 | def remove(self, individual): |
---|
| 105 | return individual.numjoints > self.max_number |
---|
| 106 | |
---|
| 107 | |
---|
| 108 | class NumNeuronsHigher(Remove): |
---|
| 109 | def __init__(self, max_number): |
---|
| 110 | super(NumNeuronsHigher, self).__init__() |
---|
| 111 | self.max_number = max_number |
---|
| 112 | |
---|
| 113 | def remove(self, individual): |
---|
| 114 | return individual.numneurons > self.max_number |
---|
| 115 | |
---|
| 116 | |
---|
| 117 | class NumConnectionsHigher(Remove): |
---|
| 118 | def __init__(self, max_number): |
---|
| 119 | super(NumConnectionsHigher, self).__init__() |
---|
| 120 | self.max_number = max_number |
---|
| 121 | |
---|
| 122 | def remove(self, individual): |
---|
| 123 | return individual.numconnections > self.max_number |
---|
| 124 | |
---|
| 125 | |
---|
| 126 | class ReplaceWithHallOfFame(Step): |
---|
| 127 | def __init__(self, hof, *args, **kwargs): |
---|
| 128 | super(ReplaceWithHallOfFame, self).__init__(*args, **kwargs) |
---|
| 129 | self.hof = hof |
---|
| 130 | |
---|
| 131 | def call(self, population, *args, **kwargs): |
---|
| 132 | super(ReplaceWithHallOfFame, self).call(population) |
---|
| 133 | return list(self.hof.halloffame) |
---|
| 134 | |
---|
| 135 | |
---|
| 136 | class DeapFitness(base.Fitness): |
---|
| 137 | weights = (1, 1) |
---|
| 138 | |
---|
| 139 | def __init__(self, *args, **kwargs): |
---|
| 140 | super(DeapFitness, self).__init__(*args, **kwargs) |
---|
| 141 | |
---|
| 142 | |
---|
| 143 | class Nsga2Fitness: |
---|
| 144 | def __init__(self, fields): |
---|
| 145 | self.fields = fields |
---|
| 146 | def __call__(self, ind): |
---|
| 147 | setattr(ind, "fitness", DeapFitness(tuple(getattr(ind, _) for _ in self.fields))) |
---|
| 148 | |
---|
| 149 | |
---|
| 150 | |
---|
| 151 | class ExtractField: |
---|
| 152 | def __init__(self, field_name): |
---|
| 153 | self.field_name = field_name |
---|
| 154 | def __call__(self, ind): |
---|
| 155 | return getattr(ind, self.field_name) |
---|
| 156 | |
---|
| 157 | def extract_fitness(ind): |
---|
| 158 | return ind.fitness_raw |
---|
| 159 | |
---|
| 160 | |
---|
| 161 | def load_experiment(path): |
---|
| 162 | with open(path, "rb") as file: |
---|
| 163 | experiment = pickle.load(file) |
---|
| 164 | print("Loaded experiment. Generation:", experiment.generation) |
---|
| 165 | return experiment |
---|
| 166 | |
---|
| 167 | |
---|
| 168 | def create_experiment(): |
---|
| 169 | parsed_args = parseArguments() |
---|
[1149] | 170 | frams_lib = FramsticksLib(parsed_args.path, parsed_args.lib, parsed_args.sim.split(";")) |
---|
[1147] | 171 | |
---|
| 172 | opt_dissim = [] |
---|
| 173 | opt_fitness = [] |
---|
| 174 | for crit in parsed_args.opt.split(','): |
---|
| 175 | try: |
---|
| 176 | Dissim(crit) |
---|
| 177 | opt_dissim.append(crit) |
---|
| 178 | except ValueError: |
---|
| 179 | opt_fitness.append(crit) |
---|
| 180 | if len(opt_dissim) > 1: |
---|
| 181 | raise ValueError("Only one type of dissimilarity supported") |
---|
| 182 | |
---|
| 183 | # Steps for generating first population |
---|
| 184 | init_stages = [ |
---|
| 185 | FramsPopulation(frams_lib, parsed_args.genformat, parsed_args.popsize) |
---|
| 186 | ] |
---|
| 187 | |
---|
| 188 | # Selection procedure |
---|
| 189 | selection = NSGA2Selection(copy=True) |
---|
| 190 | |
---|
| 191 | # Procedure for generating new population. This steps will be run as long there is less than |
---|
| 192 | # popsize individuals in the new population |
---|
| 193 | new_generation_stages = [FramsCrossAndMutate(frams_lib, cross_prob=0.2, mutate_prob=0.9)] |
---|
| 194 | |
---|
| 195 | # Steps after new population is created. Executed exactly once per generation. |
---|
| 196 | generation_modifications = [] |
---|
| 197 | |
---|
| 198 | # ------------------------------------------------- |
---|
| 199 | # Fitness |
---|
| 200 | |
---|
| 201 | fitness_raw = FitnessStep(frams_lib, fields={**{_:_ for _ in opt_fitness}, |
---|
| 202 | "numparts": "numparts", |
---|
| 203 | "numjoints": "numjoints", |
---|
| 204 | "numneurons": "numneurons", |
---|
| 205 | "numconnections": "numconnections"}, |
---|
| 206 | fields_defaults={parsed_args.opt: None, "numparts": float("inf"), |
---|
| 207 | "numjoints": float("inf"), "numneurons": float("inf"), |
---|
| 208 | "numconnections": float("inf"), |
---|
| 209 | **{_:None for _ in opt_fitness} |
---|
| 210 | }, |
---|
| 211 | evaluation_count=1) |
---|
| 212 | |
---|
| 213 | fitness_end = FitnessStep(frams_lib, fields={_:_ for _ in opt_fitness}, |
---|
| 214 | fields_defaults={parsed_args.opt: None}, |
---|
| 215 | evaluation_count=parsed_args.hof_evaluations) |
---|
| 216 | # Remove |
---|
| 217 | remove = [] |
---|
| 218 | remove.append(FieldRemove(opt_fitness[0], None)) # Remove individuals if they have default value for fitness |
---|
| 219 | if parsed_args.max_numparts is not None: |
---|
| 220 | # This could be also implemented by "LambdaRemove(lambda x: x.numparts > parsed_args.num_parts)" |
---|
| 221 | # But this would not serialize in checkpoint. |
---|
| 222 | remove.append(NumPartsHigher(parsed_args.max_numparts)) |
---|
| 223 | if parsed_args.max_numjoints is not None: |
---|
| 224 | remove.append(NumJointsHigher(parsed_args.max_numjoints)) |
---|
| 225 | if parsed_args.max_numneurons is not None: |
---|
| 226 | remove.append(NumNeuronsHigher(parsed_args.max_numneurons)) |
---|
| 227 | if parsed_args.max_numconnections is not None: |
---|
| 228 | remove.append(NumConnectionsHigher(parsed_args.max_numconnections)) |
---|
| 229 | |
---|
| 230 | remove_step = UnionStep(remove) |
---|
| 231 | |
---|
| 232 | fitness_remove = UnionStep([fitness_raw, remove_step]) |
---|
| 233 | |
---|
| 234 | init_stages.append(fitness_remove) |
---|
| 235 | new_generation_stages.append(fitness_remove) |
---|
| 236 | |
---|
| 237 | # ------------------------------------------------- |
---|
| 238 | # Dissimilarity as one of the criteria |
---|
| 239 | dissim = None |
---|
| 240 | if len(opt_dissim) > 0 and Dissim(opt_dissim[0]) == Dissim.levenshtein: |
---|
| 241 | dissim = LevenshteinDissimilarity(reduction="mean", output_field="dissim") |
---|
| 242 | elif len(opt_dissim) > 0 and Dissim(opt_dissim[0]) == Dissim.frams: |
---|
| 243 | dissim = FramsDissimilarity(frams_lib, reduction="mean", output_field="dissim") |
---|
| 244 | |
---|
| 245 | if dissim is not None: |
---|
| 246 | init_stages.append(dissim) |
---|
| 247 | generation_modifications.append(dissim) |
---|
| 248 | |
---|
| 249 | if dissim is not None: |
---|
| 250 | nsga2_fittnes = Nsga2Fitness(["dissim"]+ opt_fitness) |
---|
| 251 | else: |
---|
| 252 | nsga2_fittnes = Nsga2Fitness(opt_fitness) |
---|
| 253 | |
---|
| 254 | init_stages.append(LambdaStep(nsga2_fittnes)) |
---|
| 255 | generation_modifications.append(LambdaStep(nsga2_fittnes)) |
---|
| 256 | |
---|
| 257 | # ------------------------------------------------- |
---|
| 258 | # Statistics |
---|
| 259 | hall_of_fame = HallOfFameStatistics(parsed_args.hof_size, "fitness") # Wrapper for halloffamae |
---|
| 260 | replace_with_hof = ReplaceWithHallOfFame(hall_of_fame) |
---|
| 261 | statistics_deap = MultiStatistics({fit:StatisticsDeap([ |
---|
| 262 | ("avg", np.mean), |
---|
| 263 | ("stddev", np.std), |
---|
| 264 | ("min", np.min), |
---|
| 265 | ("max", np.max) |
---|
| 266 | ], ExtractField(fit)) for fit in opt_fitness}) # Wrapper for deap statistics |
---|
| 267 | |
---|
| 268 | statistics_union = UnionStep( |
---|
| 269 | [hall_of_fame, |
---|
| 270 | statistics_deap] |
---|
| 271 | ) # Union of two statistics steps. |
---|
| 272 | |
---|
| 273 | init_stages.append(statistics_union) |
---|
| 274 | generation_modifications.append(statistics_union) |
---|
| 275 | |
---|
| 276 | # ------------------------------------------------- |
---|
| 277 | # End stages: this will execute exactly once after all generations. |
---|
| 278 | end_stages = [ |
---|
| 279 | replace_with_hof, |
---|
| 280 | fitness_end, |
---|
| 281 | PopulationSave("halloffame.gen", provider=hall_of_fame.halloffame, fields={"genotype": "genotype", |
---|
| 282 | "fitness": "fitness"})] |
---|
| 283 | # ...but custom fields can be added, e.g. "custom": "recording" |
---|
| 284 | |
---|
| 285 | # ------------------------------------------------- |
---|
| 286 | |
---|
| 287 | # Experiment creation |
---|
| 288 | |
---|
| 289 | experiment = Experiment(init_population=init_stages, |
---|
| 290 | selection=selection, |
---|
| 291 | new_generation_steps=new_generation_stages, |
---|
| 292 | generation_modification=generation_modifications, |
---|
| 293 | end_steps=end_stages, |
---|
| 294 | population_size=parsed_args.popsize, |
---|
| 295 | checkpoint_path=parsed_args.checkpoint_path, |
---|
| 296 | checkpoint_interval=parsed_args.checkpoint_interval |
---|
| 297 | ) |
---|
| 298 | return experiment |
---|
| 299 | |
---|
| 300 | |
---|
| 301 | def main(): |
---|
| 302 | print("Running experiment with", sys.argv) |
---|
| 303 | parsed_args = parseArguments() |
---|
[1148] | 304 | |
---|
| 305 | if parsed_args.popsize % 4 != 0: |
---|
| 306 | raise ValueError("popsize must be a multiple of 4 (for example %d)." % (parsed_args.popsize//4*4)) # required by deap.tools.selTournamentDCD() |
---|
| 307 | |
---|
[1147] | 308 | if parsed_args.debug: |
---|
| 309 | logging.basicConfig(level=logging.DEBUG) |
---|
| 310 | |
---|
| 311 | if parsed_args.checkpoint_path is not None and os.path.exists(parsed_args.checkpoint_path): |
---|
| 312 | experiment = load_experiment(parsed_args.checkpoint_path) |
---|
| 313 | else: |
---|
| 314 | experiment = create_experiment() |
---|
| 315 | experiment.init() # init is mandatory |
---|
| 316 | |
---|
| 317 | experiment.run(parsed_args.generations) |
---|
| 318 | |
---|
| 319 | # Next call for experiment.run(10) will do nothing. Parameter 10 specifies how many generations should be |
---|
| 320 | # in one experiment. Previous call generated 10 generations. |
---|
| 321 | # Example 1: |
---|
| 322 | # experiment.init() |
---|
| 323 | # experiment.run(10) |
---|
| 324 | # experiment.run(12) |
---|
| 325 | # #This will run for total of 12 generations |
---|
| 326 | # |
---|
| 327 | # Example 2 |
---|
| 328 | # experiment.init() |
---|
| 329 | # experiment.run(10) |
---|
| 330 | # experiment.init() |
---|
| 331 | # experiment.run(10) |
---|
| 332 | # # All work produced by first run will be "destroyed" by second init(). |
---|
| 333 | |
---|
| 334 | |
---|
| 335 | if __name__ == '__main__': |
---|
| 336 | main() |
---|