1 | from abc import ABC |
---|
2 | |
---|
3 | import numpy as np |
---|
4 | |
---|
5 | from evolalg.base.frams_step import FramsStep |
---|
6 | from evolalg.dissimilarity.dissimilarity import Dissimilarity |
---|
7 | |
---|
8 | #TODO eliminate overlap with dissimilarity.py |
---|
9 | |
---|
10 | |
---|
11 | class FramsDissimilarity(FramsStep): |
---|
12 | |
---|
13 | def __init__(self, frams_lib, reduction="mean", output_field="dissim", knn=None, *args, **kwargs): |
---|
14 | super(FramsDissimilarity, self).__init__(frams_lib, *args, **kwargs) |
---|
15 | |
---|
16 | self.output_field = output_field |
---|
17 | self.fn_reduce = None |
---|
18 | self.knn = knn |
---|
19 | if reduction == "mean": |
---|
20 | self.fn_reduce = np.mean |
---|
21 | elif reduction == "max": |
---|
22 | self.fn_reduce = np.max |
---|
23 | elif reduction == "min": |
---|
24 | self.fn_reduce = np.min |
---|
25 | elif reduction == "sum": |
---|
26 | self.fn_reduce = np.sum |
---|
27 | elif reduction == "knn_mean": |
---|
28 | self.fn_reduce = self.knn_mean |
---|
29 | elif reduction == "none" or reduction is None: |
---|
30 | self.fn_reduce = None |
---|
31 | else: |
---|
32 | raise ValueError("Unknown reduction type. Supported: mean, max, min, sum, knn_mean, none") |
---|
33 | |
---|
34 | def reduce(self, dissim_matrix): |
---|
35 | if self.fn_reduce is None: |
---|
36 | return dissim_matrix |
---|
37 | return self.fn_reduce(dissim_matrix, axis=1) |
---|
38 | |
---|
39 | def call(self, population): |
---|
40 | super(FramsDissimilarity, self).call(population) |
---|
41 | if len(population) == 0: |
---|
42 | return [] |
---|
43 | dissim_matrix = self.frams.dissimilarity([_.genotype for _ in population]) |
---|
44 | dissim = self.reduce(dissim_matrix) |
---|
45 | for d,ind in zip(dissim, population): |
---|
46 | setattr(ind, self.output_field, d) |
---|
47 | return population |
---|
48 | |
---|
49 | def knn_mean(self, dissim_matrix,axis): |
---|
50 | return np.mean(np.partition(dissim_matrix, self.knn)[:,:self.knn],axis=axis) |
---|