source: framspy/evolalg/dissimilarity/frams_dissimilarity.py @ 1142

Last change on this file since 1142 was 1139, checked in by Maciej Komosinski, 4 years ago

Added --debug mode that prints names of steps; final multiple evaluation now evaluates genotypes in hall of fame instead of the last population

File size: 1.4 KB
Line 
1from abc import ABC
2
3import numpy as np
4
5from evolalg.base.frams_step import FramsStep
6from evolalg.dissimilarity.dissimilarity import Dissimilarity
7
8
9class FramsDissimilarity(FramsStep):
10
11    def __init__(self, frams_lib, reduction="mean", output_field="dissim", *args, **kwargs):
12        super(FramsDissimilarity, self).__init__(frams_lib, *args, **kwargs)
13
14        self.output_field = output_field
15        self.fn_reduce = None
16        if reduction == "mean":
17            self.fn_reduce = np.mean
18        elif reduction == "max":
19            self.fn_reduce = np.max
20        elif reduction == "min":
21            self.fn_reduce = np.min
22        elif reduction == "sum":
23            self.fn_reduce = np.sum
24        elif reduction == "none" or reduction is None:
25            self.fn_reduce = None
26        else:
27            raise ValueError("Unknown reduction type. Supported: mean, max, min, sum, none")
28
29    def reduce(self, dissim_matrix):
30        if self.fn_reduce is None:
31            return dissim_matrix
32        return self.fn_reduce(dissim_matrix, axis=1)
33
34    def call(self, population):
35        super(FramsDissimilarity, self).call(population)
36        if len(population) == 0:
37            return []
38        dissim_matrix = self.frams.dissimilarity([_.genotype for _ in population])
39        dissim = self.reduce(dissim_matrix)
40        for d,ind in zip(dissim, population):
41            setattr(ind, self.output_field, d)
42        return population
Note: See TracBrowser for help on using the repository browser.