import time from abc import ABC from typing import List from ..structures.individual import Individual from ..structures.population import PopulationStructures from .experiment_abc import ExperimentABC class ExperimentIslands(ExperimentABC, ABC): number_of_populations = 5 popsize = 100 populations: List[PopulationStructures] = [] migration_interval = 10 def __init__(self, popsize, hof_size, number_of_populations, migration_interval, save_only_best) -> None: super().__init__(popsize=popsize, hof_size=hof_size, save_only_best=save_only_best) self.number_of_populations=number_of_populations self.migration_interval=migration_interval def migrate_populations(self): print("Performing base migration") pool_of_all_individuals = [] for p in self.populations: pool_of_all_individuals.extend(p.population) print(f"Pool of individuals: {len(pool_of_all_individuals)}") sorted_individuals = sorted( pool_of_all_individuals, key=lambda x: x.rawfitness) print(f"Best indiviudal for new islands:") for i in range(self.number_of_populations): shift = i*self.popsize self.populations[i].population = sorted_individuals[shift:shift+self.popsize] print(i, self.populations[i].population[-1].rawfitness) def initialize_evolution(self, initialgenotype): self.current_generation = 0 self.time_elapsed = 0 self.stats = [] # stores the best individuals, one from each generation initial_individual = Individual() initial_individual.set_and_evaluate(initialgenotype, self.evaluate) self.stats.append(initial_individual.rawfitness) [self.populations.append(PopulationStructures(initial_individual=initial_individual, popsize=self.popsize)) for _ in range(self.number_of_populations)] def get_state(self): return [self.time_elapsed, self.current_generation, self.populations, self.hof, self.stats] def set_state(self, state): self.time_elapsed, self.current_generation, self.populations, hof_, self.stats = state # sorting: ensure that we add from worst to best so all individuals are added to HOF for h in sorted(hof_, key=lambda x: x.rawfitness): self.hof.add(h) def evolve(self, hof_savefile, generations, initialgenotype, pmut, pxov, tournament_size): file_name = self.get_state_filename(hof_savefile) state = self.load_state(file_name) if state is not None: # loaded state from file # saved generation has been completed, start with the next one self.current_generation += 1 print("...Resuming from saved state: population size = %d, hof size = %d, stats size = %d, generation = %d/%d" % (len(self.populations[0].population), len( self.hof), len(self.stats), self.current_generation, generations)) # self.current_generation (and g) are 0-based, parsed_args.generations is 1-based else: self.initialize_evolution(initialgenotype) time0 = time.process_time() for g in range(self.current_generation, generations): for p in self.populations: p.population = self.make_new_population( p.population, pmut, pxov, tournament_size) if g % self.migration_interval == 0: print("---------Start of migration-------") self.migrate_populations() print("---------End of migration---------") pool_of_all_individuals = [] [pool_of_all_individuals.extend(p.population) for p in self.populations] self.update_stats(g, pool_of_all_individuals) if hof_savefile is not None: self.current_generation = g self.time_elapsed += time.process_time() - time0 self.save_state(file_name) if hof_savefile is not None: self.save_genotypes(hof_savefile) return self.hof, self.stats @staticmethod def get_args_for_parser(): parser = ExperimentABC.get_args_for_parser() parser.add_argument("-islands",type=int, default=5, help="Number of subpopulations (islands)") parser.add_argument("-generations_migration",type=int, default=10, help="Number of generations separating migration events when genotypes migrate between subpopulations (islands)") return parser