import math import numpy as np def wcentre(matrix, weights): sw = weights.sum() swx = (matrix*weights).sum(axis=1) swx /= sw return (matrix.transpose()-swx).transpose()*np.sqrt(weights) def weightedMDS(distances, weights): n = len(weights) distances = distances**2 for i in range(2): distances = wcentre(distances, weights) distances = distances.T distances *= -0.5 _, eigenvalues, vh = np.linalg.svd(distances) W = (vh/np.sqrt(weights)).T S = np.zeros((n,n)) np.fill_diagonal(S, eigenvalues) S = S**0.5 dcoords = W.dot(S) coords = np.zeros((n, 3)) coords[:,0]=dcoords[:,0] for i in range(1,3): if n>i: coords[:,i]=dcoords[:,i] return coords def align(model, fixedZaxis=False): numparts=model.numparts._value() distmatrix = np.zeros((numparts, numparts), dtype=float) for p1 in range(numparts): for p2 in range(numparts): #TODO optimize, only calculate a triangle P1=model.getPart(p1) P2=model.getPart(p2) if fixedZaxis: #fixed vertical axis, so pretend all points are on the xy plane z_dist = 0 else: z_dist = (P1.z._value()-P2.z._value())**2 distmatrix[p1,p2]=math.sqrt((P1.x._value()-P2.x._value())**2+(P1.y._value()-P2.y._value())**2+z_dist) if model.numjoints._value() > 0: weightvector=np.zeros((numparts), dtype=int) else: weightvector=np.ones((numparts), dtype=int) for j in range(model.numjoints._value()): J=model.getJoint(j) weightvector[J.p1._value()]+=1 weightvector[J.p2._value()]+=1 weightvector=weightvector.astype(float) # convert to float once, since later it would be promoted to float so many times anyway... coords = weightedMDS(distmatrix, weightvector) # update parts positions n = len(weightvector) for p in range(numparts): P = model.getPart(p) P.x = coords[p, 0] if n > 1: P.y = coords[p, 1] if n > 2: if not fixedZaxis: P.z = coords[p, 2] if fixedZaxis: if np.shape(coords)[1] > 2: #restore original z coordinate for p in range(numparts): P=model.getPart(p) coords[p,2]=P.z._value()