source: framspy/FramsticksLib.py @ 1180

Last change on this file since 1180 was 1177, checked in by Maciej Komosinski, 3 years ago

FramsticksLib?.dissimilarity() now has a mandatory argument to select a method of dissimilarity calculation

File size: 12.7 KB
Line 
1from typing import List  # to be able to specify a type hint of list(something)
2import json
3import sys, os
4import argparse
5import numpy as np
6import frams
7
8
9class FramsticksLib:
10        """Communicates directly with Framsticks library (.dll or .so).
11        You can perform basic operations like mutation, crossover, and evaluation of genotypes.
12        This way you can perform evolution controlled by python as well as access and manipulate genotypes.
13        You can even design and use in evolution your own genetic representation implemented entirely in python,
14        or access and control the simulation and simulated creatures step by step.
15
16        Should you want to modify or extend this class, first see and test the examples in frams-test.py.
17
18        You need to provide one or two parameters when you run this class: the path to Framsticks where .dll/.so resides
19        and, optionally, the name of the Framsticks dll/so (if it is non-standard). See::
20                FramsticksLib.py -h"""
21
22        PRINT_FRAMSTICKS_OUTPUT: bool = False  # set to True for debugging
23        DETERMINISTIC: bool = False  # set to True to have the same results in each run
24
25        GENOTYPE_INVALID = "/*invalid*/"  # this is how genotype invalidity is represented in Framsticks
26        EVALUATION_SETTINGS_FILE = [  # all files MUST be compatible with the standard-eval expdef. The order they are loaded in is important!
27                "eval-allcriteria.sim",  # a good trade-off in performance sampling period ("perfperiod") for vertpos and velocity
28                # "deterministic.sim",  # turns off random noise (added for robustness) so that each evaluation yields identical performance values (causes "overfitting")
29                # "sample-period-2.sim", # short performance sampling period so performance (e.g. vertical position) is sampled more often
30                # "sample-period-longest.sim",  # increased performance sampling period so distance and velocity are measured rectilinearly
31        ]
32
33
34        # This function is not needed because in python, "For efficiency reasons, each module is only imported once per interpreter session."
35        # @staticmethod
36        # def getFramsModuleInstance():
37        #       """If some other party needs access to the frams module to directly access or modify Framsticks objects,
38        #       use this function to avoid importing the "frams" module multiple times and avoid potentially initializing
39        #       it many times."""
40        #       return frams
41
42        def __init__(self, frams_path, frams_lib_name, sim_settings_files):
43                if frams_lib_name is None:
44                        frams.init(frams_path)  # could add support for setting alternative directories using -D and -d
45                else:
46                        frams.init(frams_path, "-L" + frams_lib_name)  # could add support for setting alternative directories using -D and -d
47
48                print('Available objects:', dir(frams))
49                print()
50
51                print('Performing a basic test 1/2... ', end='')
52                simplest = self.getSimplest("1")
53                assert simplest == "X" and type(simplest) is str
54                print('OK.')
55                print('Performing a basic test 2/2... ', end='')
56                assert self.isValid(["X[0:0],", "X[0:0]", "X[1:0]"]) == [False, True, False]
57                print('OK.')
58                if not self.DETERMINISTIC:
59                        frams.Math.randomize()
60                frams.Simulator.expdef = "standard-eval"  # this expdef (or fully compatible) must be used by EVALUATION_SETTINGS_FILE
61                if sim_settings_files is not None:
62                        self.EVALUATION_SETTINGS_FILE = sim_settings_files
63                print('Using settings:', self.EVALUATION_SETTINGS_FILE)
64                assert isinstance(self.EVALUATION_SETTINGS_FILE, list)  # ensure settings file(s) are provided as a list
65                for simfile in self.EVALUATION_SETTINGS_FILE:
66                        frams.Simulator.ximport(simfile, 4 + 8 + 16)
67
68
69        def getSimplest(self, genetic_format) -> str:
70                return frams.GenMan.getSimplest(genetic_format).genotype._string()
71
72
73        def evaluate(self, genotype_list: List[str]):
74                """
75                Returns:
76                        List of dictionaries containing the performance of genotypes evaluated using self.EVALUATION_SETTINGS_FILE.
77                        Note that for whatever reason (e.g. incorrect genotype), the dictionaries you will get may be empty or
78                        partially empty and may not have the fields you expected, so handle such cases properly.
79                """
80                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
81
82                if not self.PRINT_FRAMSTICKS_OUTPUT:
83                        ec = frams.MessageCatcher.new()  # mute potential errors, warnings, messages
84
85                frams.GenePools[0].clear()
86                for g in genotype_list:
87                        frams.GenePools[0].add(g)
88                frams.ExpProperties.evalsavefile = ""  # no need to store results in a file - we will get evaluations directly from Genotype's "data" field
89                frams.Simulator.init()
90                frams.Simulator.start()
91
92                # step = frams.Simulator.step  # cache reference to avoid repeated lookup in the loop (just for performance)
93                # while frams.Simulator.running._int():  # standard-eval.expdef sets running to 0 when the evaluation is complete
94                #       step()
95                frams.Simulator.eval("while(Simulator.running) Simulator.step();")  # fastest
96                # Timing for evaluating a single simple creature 100x:
97                # - python step without caching: 2.2s
98                # - python step with caching   : 1.6s
99                # - pure FramScript and eval() : 0.4s
100
101                if not self.PRINT_FRAMSTICKS_OUTPUT:
102                        if ec.error_count._value() > 0:  # errors are important and should not be ignored, at least display how many
103                                print("[ERROR]", ec.error_count, "error(s) and", ec.warning_count, "warning(s) while evaluating", len(genotype_list), "genotype(s)")
104                        ec.close()
105
106                results = []
107                for g in frams.GenePools[0]:
108                        serialized_dict = frams.String.serialize(g.data[frams.ExpProperties.evalsavedata._value()])
109                        evaluations = json.loads(serialized_dict._string())  # Framsticks native ExtValue's get converted to native python types such as int, float, list, str.
110                        # now, for consistency with FramsticksCLI.py, add "num" and "name" keys that are missing because we got data directly from Genotype, not from the file produced by standard-eval.expdef's function printStats(). What we do below is what printStats() does.
111                        result = {"num": g.num._value(), "name": g.name._value(), "evaluations": evaluations}
112                        results.append(result)
113
114                return results
115
116
117        def mutate(self, genotype_list: List[str]) -> List[str]:
118                """
119                Returns:
120                        The genotype(s) of the mutated source genotype(s). self.GENOTYPE_INVALID for genotypes whose mutation failed (for example because the source genotype was invalid).
121                """
122                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
123
124                mutated = []
125                for g in genotype_list:
126                        mutated.append(frams.GenMan.mutate(frams.Geno.newFromString(g)).genotype._string())
127                assert len(genotype_list) == len(mutated), "Submitted %d genotypes, received %d validity values" % (len(genotype_list), len(mutated))
128                return mutated
129
130
131        def crossOver(self, genotype_parent1: str, genotype_parent2: str) -> str:
132                """
133                Returns:
134                        The genotype of the offspring. self.GENOTYPE_INVALID if the crossing over failed.
135                """
136                return frams.GenMan.crossOver(frams.Geno.newFromString(genotype_parent1), frams.Geno.newFromString(genotype_parent2)).genotype._string()
137
138
139        def dissimilarity(self, genotype_list: List[str], method: int) -> np.ndarray:
140                """
141                        :param method: -1 = genetic Levenshtein distance; 0, 1, 2 = phenetic dissimilarity (SimilMeasureGreedy, SimilMeasureHungarian, SimilMeasureDistribution)
142                        :return: A square array with dissimilarities of each pair of genotypes.
143                """
144                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
145
146                # if you want to override what EVALUATION_SETTINGS_FILE sets, you can do it below:
147                # frams.SimilMeasureHungarian.simil_partgeom = 1
148                # frams.SimilMeasureHungarian.simil_weightedMDS = 1
149
150                n = len(genotype_list)
151                square_matrix = np.zeros((n, n))
152
153                if method in (0, 1, 2):  # Framsticks phenetic dissimilarity methods
154                        frams.SimilMeasure.simil_type = method
155                        genos = []  # prepare an array of Geno objects so that we don't need to convert raw strings to Geno objects all the time in loops
156                        for g in genotype_list:
157                                genos.append(frams.Geno.newFromString(g))
158                        frams_evaluateDistance = frams.SimilMeasure.evaluateDistance  # cache function reference for better performance in loops
159                        for i in range(n):
160                                for j in range(n):  # maybe calculate only one triangle if you really need a 2x speedup
161                                        square_matrix[i][j] = frams_evaluateDistance(genos[i], genos[j])._double()
162                elif method == -1:
163                        import Levenshtein
164                        for i in range(n):
165                                for j in range(n):  # maybe calculate only one triangle if you really need a 2x speedup
166                                        square_matrix[i][j] = Levenshtein.distance(genotype_list[i], genotype_list[j])
167                else:
168                        raise Exception("Don't know what to do with dissimilarity method = %d" % method)
169
170                for i in range(n):
171                        assert square_matrix[i][i] == 0, "Not a correct dissimilarity matrix, diagonal expected to be 0"
172                non_symmetric_diff = square_matrix - square_matrix.T
173                non_symmetric_count = np.count_nonzero(non_symmetric_diff)
174                if non_symmetric_count > 0:
175                        non_symmetric_diff_abs = np.abs(non_symmetric_diff)
176                        max_pos1d = np.argmax(non_symmetric_diff_abs)  # location of the largest discrepancy
177                        max_pos2d_XY = np.unravel_index(max_pos1d, non_symmetric_diff_abs.shape)  # 2D coordinates of the largest discrepancy
178                        max_pos2d_YX = max_pos2d_XY[1], max_pos2d_XY[0]  # 2D coordinates of the largest discrepancy mirror
179                        worst_guy_XY = square_matrix[max_pos2d_XY]  # this distance and the other below (its mirror) are most different
180                        worst_guy_YX = square_matrix[max_pos2d_YX]
181                        print("[WARN] Dissimilarity matrix: expecting symmetry, but %g out of %d pairs were asymmetrical, max difference was %g (%g %%)" %
182                              (non_symmetric_count / 2,
183                               n * (n - 1) / 2,
184                               non_symmetric_diff_abs[max_pos2d_XY],
185                               non_symmetric_diff_abs[max_pos2d_XY] * 100 / ((worst_guy_XY + worst_guy_YX) / 2)))  # max diff is not necessarily max %
186                return square_matrix
187
188
189        def isValid(self, genotype_list: List[str]) -> List[bool]:
190                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
191                valid = []
192                for g in genotype_list:
193                        valid.append(frams.Geno.newFromString(g).is_valid._int() == 1)
194                assert len(genotype_list) == len(valid), "Tested %d genotypes, received %d validity values" % (len(genotype_list), len(valid))
195                return valid
196
197
198def parseArguments():
199        parser = argparse.ArgumentParser(description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[0])
200        parser.add_argument('-path', type=ensureDir, required=True, help='Path to the Framsticks library (.dll or .so) without trailing slash.')
201        parser.add_argument('-lib', required=False, help='Library name. If not given, "frams-objects.dll" or "frams-objects.so" is assumed depending on the platform.')
202        parser.add_argument('-simsettings', required=False, help='The name of the .sim file with settings for evaluation, mutation, crossover, and similarity estimation. If not given, "eval-allcriteria.sim" is assumed by default. Must be compatible with the "standard-eval" expdef.')
203        parser.add_argument('-genformat', required=False, help='Genetic format for the demo run, for example 4, 9, or S. If not given, f1 is assumed.')
204        return parser.parse_args()
205
206
207def ensureDir(string):
208        if os.path.isdir(string):
209                return string
210        else:
211                raise NotADirectoryError(string)
212
213
214if __name__ == "__main__":
215        # A demo run.
216
217        # TODO ideas:
218        # - check_validity with three levels (invalid, corrected, valid)
219        # - a pool of binaries running simultaneously, balance load - in particular evaluation
220
221        parsed_args = parseArguments()
222        framsLib = FramsticksLib(parsed_args.path, parsed_args.lib, parsed_args.simsettings)
223
224        print("Sending a direct command to Framsticks library that calculates \"4\"+2 yields", frams.Simulator.eval("return \"4\"+2;"))
225
226        simplest = framsLib.getSimplest('1' if parsed_args.genformat is None else parsed_args.genformat)
227        print("\tSimplest genotype:", simplest)
228        parent1 = framsLib.mutate([simplest])[0]
229        parent2 = parent1
230        MUTATE_COUNT = 10
231        for x in range(MUTATE_COUNT):  # example of a chain of 10 mutations
232                parent2 = framsLib.mutate([parent2])[0]
233        print("\tParent1 (mutated simplest):", parent1)
234        print("\tParent2 (Parent1 mutated %d times):" % MUTATE_COUNT, parent2)
235        offspring = framsLib.crossOver(parent1, parent2)
236        print("\tCrossover (Offspring):", offspring)
237        print('\tDissimilarity of Parent1 and Offspring:', framsLib.dissimilarity([parent1, offspring], 1)[0, 1])
238        print('\tPerformance of Offspring:', framsLib.evaluate([offspring]))
239        print('\tValidity of Parent1, Parent 2, and Offspring:', framsLib.isValid([parent1, parent2, offspring]))
Note: See TracBrowser for help on using the repository browser.