from typing import List # to be able to specify a type hint of list(something) import json import sys, os import argparse import numpy as np import frams class FramsticksLib: """Communicates directly with Framsticks library (.dll or .so). You can perform basic operations like mutation, crossover, and evaluation of genotypes. This way you can perform evolution controlled by python as well as access and manipulate genotypes. You can even design and use in evolution your own genetic representation implemented entirely in python, or access and control the simulation and simulated creatures step by step. You need to provide one or two parameters when you run this class: the path to Framsticks where .dll/.so resides and, optionally, the name of the Framsticks dll/so (if it is non-standard). See:: FramsticksLib.py -h""" PRINT_FRAMSTICKS_OUTPUT: bool = False # set to True for debugging DETERMINISTIC: bool = False # set to True to have the same results in each run GENOTYPE_INVALID = "/*invalid*/" # this is how genotype invalidity is represented in Framsticks EVALUATION_SETTINGS_FILE = "eval-allcriteria.sim" # MUST be compatible with standard-eval expdef def __init__(self, frams_path, frams_lib_name): if frams_lib_name is None: frams.init(frams_path) # could add support for setting alternative directories using -D and -d else: frams.init(frams_path, "-L" + frams_lib_name) # could add support for setting alternative directories using -D and -d print('Available objects:', dir(frams)) print() print('Performing a basic test 1/2... ', end='') simplest = self.getSimplest("1") assert simplest == "X" and type(simplest) is str print('OK.') print('Performing a basic test 2/2... ', end='') assert self.isValid(["X[0:0],", "X[0:0]", "X[1:0]"]) == [False, True, False] print('OK.') if not self.DETERMINISTIC: frams.Math.randomize(); frams.Simulator.expdef = "standard-eval" # this expdef must be used by EVALUATION_SETTINGS_FILE def getSimplest(self, genetic_format) -> str: return frams.GenMan.getSimplest(genetic_format).genotype._string() def evaluate(self, genotype_list: List[str]): """ Returns: List of dictionaries containing the performance of genotypes evaluated using self.EVALUATION_SETTINGS_FILE. Note that for whatever reason (e.g. incorrect genotype), the dictionaries you will get may be empty or partially empty and may not have the fields you expected, so handle such cases properly. """ assert isinstance(genotype_list, list) # because in python str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity if not self.PRINT_FRAMSTICKS_OUTPUT: ec = frams.MessageCatcher.new() # mute potential errors, warnings, messages frams.GenePools[0].clear() frams.Simulator.ximport(self.EVALUATION_SETTINGS_FILE, 2 + 4 + 8 + 16) for g in genotype_list: frams.GenePools[0].add(g) frams.ExpProperties.evalsavefile = "" # no need to store results in a file - we will get evaluations directly from Genotype's "data" field frams.Simulator.init() frams.Simulator.start() step = frams.Simulator.step # cache reference to avoid repeated lookup in the loop while frams.Simulator.running._int(): # standard-eval.expdef sets running to 0 when the evaluation is complete step() if not self.PRINT_FRAMSTICKS_OUTPUT: if ec.error_count._value() > 0: # errors are important and should not be ignored, at least display how many print("[ERROR]", ec.error_count, "error(s) and", ec.warning_count, "warning(s) while evaluating", len(genotype_list), "genotype(s)") ec.close() results = [] for g in frams.GenePools[0]: serialized_dict = frams.String.serialize(g.data[frams.ExpProperties.evalsavedata._value()]) evaluations = json.loads(serialized_dict._string()) # now, for consistency with FramsticksCLI.py, add "num" and "name" keys that are missing because we got data directly from Genotype, not from the file produced by standard-eval.expdef's function printStats(). What we do below is what printStats() does. result = {"num": g.num._value(), "name": g.name._value(), "evaluations": evaluations} results.append(result) return results def mutate(self, genotype_list: List[str]) -> List[str]: """ Returns: The genotype(s) of the mutated source genotype(s). self.GENOTYPE_INVALID for genotypes whose mutation failed (for example because the source genotype was invalid). """ assert isinstance(genotype_list, list) # because in python str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity mutated = [] for g in genotype_list: mutated.append(frams.GenMan.mutate(frams.Geno.newFromString(g)).genotype._string()) assert len(genotype_list) == len(mutated), "Submitted %d genotypes, received %d validity values" % (len(genotype_list), len(mutated)) return mutated def crossOver(self, genotype_parent1: str, genotype_parent2: str) -> str: """ Returns: The genotype of the offspring. self.GENOTYPE_INVALID if the crossing over failed. """ return frams.GenMan.crossOver(frams.Geno.newFromString(genotype_parent1), frams.Geno.newFromString(genotype_parent2)).genotype._string() def dissimilarity(self, genotype_list: List[str]) -> np.ndarray: """ Returns: A square array with dissimilarities of each pair of genotypes. """ assert isinstance(genotype_list, list) # because in python str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity frams.SimilMeasure.type = 1 # adjust to your needs. Set here because loading EVALUATION_SETTINGS_FILE during evaluation may overwrite these parameters frams.SimilMeasureHungarian.simil_weightedMDS = 1 frams.SimilMeasureHungarian.simil_partgeom = 1 n = len(genotype_list) square_matrix = np.zeros((n, n)) genos = [] # prepare an array of Geno objects so we don't need to convert raw strings to Geno objects all the time for g in genotype_list: genos.append(frams.Geno.newFromString(g)) for i in range(n): for j in range(n): # maybe calculate only one triangle if you really need a 2x speedup square_matrix[i][j] = frams.SimilMeasure.evaluateDistance(genos[i], genos[j])._double() for i in range(n): assert square_matrix[i][i] == 0, "Not a correct dissimilarity matrix, diagonal expected to be 0" assert (square_matrix == square_matrix.T).all(), "Probably not a correct dissimilarity matrix, expecting symmetry, verify this" # could introduce tolerance in comparison (e.g. class field DISSIMIL_DIFF_TOLERANCE=10^-5) so that miniscule differences do not fail here return square_matrix def isValid(self, genotype_list: List[str]) -> List[bool]: assert isinstance(genotype_list, list) # because in python str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity valid = [] for g in genotype_list: valid.append(frams.Geno.newFromString(g).is_valid._int() == 1) assert len(genotype_list) == len(valid), "Submitted %d genotypes, received %d validity values" % (len(genotype_list), len(valid)) return valid def parseArguments(): parser = argparse.ArgumentParser(description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[0]) parser.add_argument('-path', type=ensureDir, required=True, help='Path to the Framsticks library (.dll or .so) without trailing slash.') parser.add_argument('-lib', required=False, help='Library name. If not given, "frams-objects.dll" or "frams-objects.so" is assumed depending on the platform.') parser.add_argument('-genformat', required=False, help='Genetic format for the demo run, for example 4, 9, or S. If not given, f1 is assumed.') return parser.parse_args() def ensureDir(string): if os.path.isdir(string): return string else: raise NotADirectoryError(string) if __name__ == "__main__": # A demo run. # TODO ideas: # - check_validity with three levels (invalid, corrected, valid) # - a pool of binaries running simultaneously, balance load - in particular evaluation parsed_args = parseArguments() framsDLL = FramsticksLib(parsed_args.path, parsed_args.lib) print("Sending a direct command to Framsticks CLI that calculates \"4\"+2 yields", frams.Simulator.eval("return \"4\"+2;")) simplest = framsDLL.getSimplest('1' if parsed_args.genformat is None else parsed_args.genformat) print("\tSimplest genotype:", simplest) parent1 = framsDLL.mutate([simplest])[0] parent2 = parent1 MUTATE_COUNT = 10 for x in range(MUTATE_COUNT): # example of a chain of 10 mutations parent2 = framsDLL.mutate([parent2])[0] print("\tParent1 (mutated simplest):", parent1) print("\tParent2 (Parent1 mutated %d times):" % MUTATE_COUNT, parent2) offspring = framsDLL.crossOver(parent1, parent2) print("\tCrossover (Offspring):", offspring) print('\tDissimilarity of Parent1 and Offspring:', framsDLL.dissimilarity([parent1, offspring])[0, 1]) print('\tPerformance of Offspring:', framsDLL.evaluate([offspring])) print('\tValidity of Parent1, Parent 2, and Offspring:', framsDLL.isValid([parent1, parent2, offspring]))