source: framspy/FramsticksLib.py @ 1245

Last change on this file since 1245 was 1221, checked in by Maciej Komosinski, 20 months ago

Cosmetic

File size: 19.9 KB
Line 
1from typing import List  # to be able to specify a type hint of list(something)
2import json
3import sys, os
4import argparse
5import numpy as np
6import frams
7
8
9class FramsticksLib:
10        """Communicates directly with Framsticks library (.dll or .so or .dylib).
11        You can perform basic operations like mutation, crossover, and evaluation of genotypes.
12        This way you can perform evolution controlled by python as well as access and manipulate genotypes.
13        You can even design and use in evolution your own genetic representation implemented entirely in python,
14        or access and control the simulation and simulated creatures step by step.
15
16        Should you want to modify or extend this class, first see and test the examples in frams-test.py.
17
18        You need to provide one or two parameters when you run this class: the path to Framsticks where .dll/.so/.dylib resides
19        and, optionally, the name of the Framsticks dll/so/dylib (if it is non-standard). See::
20                FramsticksLib.py -h"""
21
22        PRINT_FRAMSTICKS_OUTPUT: bool = False  # set to True for debugging
23        DETERMINISTIC: bool = False  # set to True to have the same results in each run
24
25        GENOTYPE_INVALID = "/*invalid*/"  # this is how genotype invalidity is represented in Framsticks
26        EVALUATION_SETTINGS_FILE = [  # all files MUST be compatible with the standard-eval expdef. The order they are loaded in is important!
27                "eval-allcriteria.sim",  # a good trade-off in performance sampling period ("perfperiod") for vertpos and velocity
28                # "deterministic.sim",  # turns off random noise (added for robustness) so that each evaluation yields identical performance values (causes "overfitting")
29                # "sample-period-2.sim", # short performance sampling period so performance (e.g. vertical position) is sampled more often
30                # "sample-period-longest.sim",  # increased performance sampling period so distance and velocity are measured rectilinearly
31        ]
32
33
34        # This function is not needed because in Python, "For efficiency reasons, each module is only imported once per interpreter session."
35        # @staticmethod
36        # def getFramsModuleInstance():
37        #       """If some other party needs access to the frams module to directly access or modify Framsticks objects,
38        #       use this function to avoid importing the "frams" module multiple times and avoid potentially initializing
39        #       it many times."""
40        #       return frams
41
42        def __init__(self, frams_path, frams_lib_name, sim_settings_files):
43                self.dissim_measure_density_distribution = None  # will be initialized only when necessary (for rare dissimilarity methods)
44
45                if frams_lib_name is None:
46                        frams.init(frams_path)  # could add support for setting alternative directories using -D and -d
47                else:
48                        frams.init(frams_path, "-L" + frams_lib_name)  # could add support for setting alternative directories using -D and -d
49
50                print('Available objects:', dir(frams))
51                print()
52
53                simplest = self.getSimplest("1")
54                if not (simplest == "X" and type(simplest) is str):
55                        raise RuntimeError('Failed getSimplest() test.')
56                if not (self.isValid(["X[0:0],", "X[0:0]", "X[1:0]"]) == [False, True, False]):
57                        raise RuntimeError('Failed isValid() test.')
58
59                if not self.DETERMINISTIC:
60                        frams.Math.randomize()
61                frams.Simulator.expdef = "standard-eval"  # this expdef (or fully compatible) must be used by EVALUATION_SETTINGS_FILE
62                if sim_settings_files is not None:
63                        self.EVALUATION_SETTINGS_FILE = sim_settings_files.split(";")  # override defaults. str becomes list
64                print('Basic tests OK. Using settings:', self.EVALUATION_SETTINGS_FILE)
65                print()
66
67                for simfile in self.EVALUATION_SETTINGS_FILE:
68                        ec = frams.MessageCatcher.new()  # catch potential errors, warnings, messages - just to detect if there are ERRORs
69                        ec.store = 2;  # store all, because they are caught by MessageCatcher and will not appear in output (which we want)
70                        frams.Simulator.ximport(simfile, 4 + 8 + 16)
71                        ec.close()
72                        print(ec.messages)  # output all caught messages
73                        if ec.error_count._value() > 0:
74                                raise ValueError("Problem while importing file '%s'" % simfile)  # make missing files or incorrect paths fatal because error messages are easy to overlook in output, and these errors would not prevent Framsticks simulator from performing genetic operations, starting and running in evaluate()
75
76
77        def getSimplest(self, genetic_format) -> str:
78                return frams.GenMan.getSimplest(genetic_format).genotype._string()
79
80
81        def evaluate(self, genotype_list: List[str]):
82                """
83                Returns:
84                        List of dictionaries containing the performance of genotypes evaluated using self.EVALUATION_SETTINGS_FILE.
85                        Note that for whatever reason (e.g. incorrect genotype), the dictionaries you will get may be empty or
86                        partially empty and may not have the fields you expected, so handle such cases properly.
87                """
88                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
89
90                if not self.PRINT_FRAMSTICKS_OUTPUT:
91                        ec = frams.MessageCatcher.new()  # mute potential errors, warnings, messages
92                        ec.store = 2;  # store all, because they are caught by MessageCatcher and will not appear in output
93
94                frams.GenePools[0].clear()
95                for g in genotype_list:
96                        frams.GenePools[0].add(g)
97                frams.ExpProperties.evalsavefile = ""  # no need to store results in a file - we will get evaluations directly from Genotype's "data" field
98                frams.Simulator.init()
99                frams.Simulator.start()
100
101                # step = frams.Simulator.step  # cache reference to avoid repeated lookup in the loop (just for performance)
102                # while frams.Simulator.running._int():  # standard-eval.expdef sets running to 0 when the evaluation is complete
103                #       step()
104                frams.Simulator.eval("while(Simulator.running) Simulator.step();")  # fastest
105                # Timing for evaluating a single simple creature 100x:
106                # - python step without caching: 2.2s
107                # - python step with caching   : 1.6s
108                # - pure FramScript and eval() : 0.4s
109
110                if not self.PRINT_FRAMSTICKS_OUTPUT:
111                        ec.close()
112                        if ec.error_count._value() > 0:
113                                print(ec.messages)  # if errors occurred, output all caught messages for debugging
114                                raise RuntimeError("[ERROR] %d error(s) and %d warning(s) while evaluating %d genotype(s)" % (ec.error_count._value(), ec.warning_count._value(), len(genotype_list)))  # make errors fatal; by default they stop the simulation anyway so let's not use potentially incorrect or partial results and fix the cause first.
115
116                results = []
117                for g in frams.GenePools[0]:
118                        serialized_dict = frams.String.serialize(g.data[frams.ExpProperties.evalsavedata._value()])
119                        evaluations = json.loads(serialized_dict._string())  # Framsticks native ExtValue's get converted to native python types such as int, float, list, str.
120                        # now, for consistency with FramsticksCLI.py, add "num" and "name" keys that are missing because we got data directly from Genotype, not from the file produced by standard-eval.expdef's function printStats(). What we do below is what printStats() does.
121                        result = {"num": g.num._value(), "name": g.name._value(), "evaluations": evaluations}
122                        results.append(result)
123
124                return results
125
126
127        def mutate(self, genotype_list: List[str]) -> List[str]:
128                """
129                Returns:
130                        The genotype(s) of the mutated source genotype(s). self.GENOTYPE_INVALID for genotypes whose mutation failed (for example because the source genotype was invalid).
131                """
132                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
133
134                mutated = []
135                for g in genotype_list:
136                        mutated.append(frams.GenMan.mutate(frams.Geno.newFromString(g)).genotype._string())
137                if len(genotype_list) != len(mutated):
138                        raise RuntimeError("Submitted %d genotypes, received %d mutants" % (len(genotype_list), len(mutated)))
139                return mutated
140
141
142        def crossOver(self, genotype_parent1: str, genotype_parent2: str) -> str:
143                """
144                Returns:
145                        The genotype of the offspring. self.GENOTYPE_INVALID if the crossing over failed.
146                """
147                return frams.GenMan.crossOver(frams.Geno.newFromString(genotype_parent1), frams.Geno.newFromString(genotype_parent2)).genotype._string()
148
149
150        def dissimilarity(self, genotype_list: List[str], method: int) -> np.ndarray:
151                """
152                        :param method: -1 = genetic Levenshtein distance; 0, 1, 2 = phenetic dissimilarity (SimilMeasureGreedy, SimilMeasureHungarian, SimilMeasureDistribution); -2, -3 = phenetic density distribution (count, frequency).
153                        :return: A square array with dissimilarities of each pair of genotypes.
154                """
155                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
156
157                # if you want to override what EVALUATION_SETTINGS_FILE sets, you can do it below:
158                # frams.SimilMeasureHungarian.simil_partgeom = 1
159                # frams.SimilMeasureHungarian.simil_weightedMDS = 1
160
161                n = len(genotype_list)
162                square_matrix = np.zeros((n, n))
163
164                if method in (0, 1, 2):  # Framsticks phenetic dissimilarity methods
165                        frams.SimilMeasure.simil_type = method
166                        genos = []  # prepare an array of Geno objects so that we don't need to convert raw strings to Geno objects all the time in loops
167                        for g in genotype_list:
168                                genos.append(frams.Geno.newFromString(g))
169                        frams_evaluateDistance = frams.SimilMeasure.evaluateDistance  # cache function reference for better performance in loops
170                        for i in range(n):
171                                for j in range(n):  # maybe calculate only one triangle if you really need a 2x speedup
172                                        square_matrix[i][j] = frams_evaluateDistance(genos[i], genos[j])._double()
173                elif method == -1:
174                        import Levenshtein
175                        for i in range(n):
176                                for j in range(n):  # maybe calculate only one triangle if you really need a 2x speedup
177                                        square_matrix[i][j] = Levenshtein.distance(genotype_list[i], genotype_list[j])
178                elif method in (-2, -3):
179                        if self.dissim_measure_density_distribution is None:
180                                from dissimilarity.densityDistribution import DensityDistribution
181                                self.dissim_measure_density_distribution = DensityDistribution(frams)
182                        self.dissim_measure_density_distribution.frequency = (method == -3)
183                        square_matrix = self.dissim_measure_density_distribution.getDissimilarityMatrix(genotype_list)
184                else:
185                        raise ValueError("Don't know what to do with dissimilarity method = %d" % method)
186
187                for i in range(n):
188                        assert square_matrix[i][i] == 0, "Not a correct dissimilarity matrix, diagonal expected to be 0"
189                non_symmetric_diff = square_matrix - square_matrix.T
190                non_symmetric_count = np.count_nonzero(non_symmetric_diff)
191                if non_symmetric_count > 0:
192                        non_symmetric_diff_abs = np.abs(non_symmetric_diff)
193                        max_pos1d = np.argmax(non_symmetric_diff_abs)  # location of the largest discrepancy
194                        max_pos2d_XY = np.unravel_index(max_pos1d, non_symmetric_diff_abs.shape)  # 2D coordinates of the largest discrepancy
195                        max_pos2d_YX = max_pos2d_XY[1], max_pos2d_XY[0]  # 2D coordinates of the largest discrepancy mirror
196                        worst_guy_XY = square_matrix[max_pos2d_XY]  # this distance and the other below (its mirror) are most different
197                        worst_guy_YX = square_matrix[max_pos2d_YX]
198                        print("[WARN] Dissimilarity matrix: expecting symmetry, but %g out of %d pairs were asymmetrical, max difference was %g (%g %%)" %
199                              (non_symmetric_count / 2,
200                               n * (n - 1) / 2,
201                               non_symmetric_diff_abs[max_pos2d_XY],
202                               non_symmetric_diff_abs[max_pos2d_XY] * 100 / ((worst_guy_XY + worst_guy_YX) / 2)))  # max diff is not necessarily max %
203                return square_matrix
204
205
206        def getRandomGenotype(self, initial_genotype: str, parts_min: int, parts_max: int, neurons_min: int, neurons_max: int, iter_max: int, return_even_if_failed: bool):
207                """
208                Some algorithms require a "random solution". To this end, this method generates a random framstick genotype.
209
210                :param initial_genotype: if not a specific genotype (which could facilitate greater variability of returned genotypes), try `getSimplest(format)`.
211                :param iter_max: how many mutations can be used to generate a random genotype that fullfills target numbers of parts and neurons.
212                :param return_even_if_failed: if the target numbers of parts and neurons was not achieved, return the closest genotype that was found? Set it to False first to experimentally adjust `iter_max` so that in most calls this function returns a genotype with target numbers of parts and neurons, and then you can set this parameter to True if target numbers of parts and neurons are not absolutely required.
213                :returns: a valid genotype or None if failed and `return_even_if_failed` is False.
214                """
215
216
217                def estimate_diff(g: str):
218                        if not self.isValidCreature([g])[0]:
219                                return None, None
220                        m = frams.Model.newFromString(g)
221                        numparts = m.numparts._value()
222                        numneurons = m.numneurons._value()
223                        diff_parts = abs(target_parts - numparts)
224                        diff_neurons = abs(target_neurons - numneurons)
225                        in_target_range = (parts_min <= numparts <= parts_max) and (neurons_min <= numneurons <= neurons_max)  # less demanding than precisely reaching target_parts and target_neurons
226                        return diff_parts + diff_neurons, in_target_range
227
228
229                # try to find a genotype that matches the number of parts and neurons randomly selected from the provided min..max range
230                # (even if we fail to match this precise target, the goal will be achieved if the found genotype manages to be within min..max ranges for parts and neurons)
231                target_parts = np.random.default_rng().integers(parts_min, parts_max + 1)
232                target_neurons = np.random.default_rng().integers(neurons_min, neurons_max + 1)
233
234                if not self.isValidCreature([initial_genotype])[0]:
235                        raise ValueError("Initial genotype '%s' is invalid" % initial_genotype)
236
237                g = initial_genotype
238                for i in range(iter_max // 2):  # a sequence of iter_max/2 undirected mutations starting from initial_genotype
239                        g_new = self.mutate([g])[0]
240                        if self.isValidCreature([g_new])[0]:  # valid mutation
241                                g = g_new
242
243                best_diff, best_in_target_range = estimate_diff(g)
244                for i in range(iter_max // 2):  # a sequence of iter_max/2 mutations, only accepting those which approach target numbers of parts and neurons
245                        g_new = self.mutate([g])[0]
246                        diff, in_target_range = estimate_diff(g_new)
247                        if diff is not None and diff <= best_diff:  # valid mutation and better or as good as current
248                                g = g_new
249                                best_diff = diff
250                                best_in_target_range = in_target_range
251                # print(diff, best_diff) # print progress approaching target numbers of parts and neurons
252
253                if best_in_target_range or return_even_if_failed:
254                        return g  # best found so far (closest to target numbers of parts and neurons)
255                return None
256
257
258        def isValid(self, genotype_list: List[str]) -> List[bool]:
259                """
260                :returns: genetic validity (i.e., not based on trying to build creatures from provided genotypes). For a more thorough check, see isValidCreature().
261                """
262                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
263                valid = []
264                for g in genotype_list:
265                        valid.append(frams.Geno.newFromString(g).is_valid._int() == 1)
266                if len(genotype_list) != len(valid):
267                        raise RuntimeError("Tested %d genotypes, received %d validity values" % (len(genotype_list), len(valid)))
268                return valid
269
270
271        def isValidCreature(self, genotype_list: List[str]) -> List[bool]:
272                """
273                :returns: validity of the genotype when revived. Apart from genetic validity, this includes detecting problems that may arise when building a Creature from Genotype, such as multiple muscles of the same type in the same location in body, e.g. 'X[@][@]'.
274                """
275
276                # Genetic validity and simulator validity are two separate properties (in particular, genetic validity check is implemented by the author of a given genetic format and operators).
277                # Thus, the subset of genotypes valid genetically and valid in simulation may be overlapping.
278                # For example, 'X[]' or 'Xr' are considered invalid by the genetic checker, but the f1->f0 converter will ignore meaningless genes and produce a valid f0 genotype.
279                # On the other hand, 'X[@][@]' or 'X[|][|]' are valid genetically, but not possible to simulate.
280                # For simplicity of usage (so that one does not need to check both properties separately using both functions), let's make one validity a subset of the other.
281                # The genetic check in the first lines of the "for" loop makes this function at least as demanding as isValid().
282
283                assert isinstance(genotype_list, list)  # because in python, str has similar capabilities as list and here it would pretend to work too, so to avoid any ambiguity
284
285                pop = frams.Populations[0]  # assuming rules from population #0 (self-colision settings are population-dependent and can influence creature build success/failure)
286
287                valid = []
288                for g in genotype_list:
289                        if frams.Geno.newFromString(g).is_valid._int() != 1:
290                                valid.append(False)  # invalid according to genetic check
291                        else:
292                                can_add = pop.canAdd(g, 1, 1)  # First "1" means to treat warnings during build as build failures - this allows detecting problems when building Creature from Genotype. Second "1" means mute emitted errors, warnings, messages. Returns 1 (ok, could add) or 0 (there were some problems building Creature from Genotype)
293                                valid.append(can_add._int() == 1)
294
295                if len(genotype_list) != len(valid):
296                        raise RuntimeError("Tested %d genotypes, received %d validity values" % (len(genotype_list), len(valid)))
297                return valid
298
299
300def parseArguments():
301        parser = argparse.ArgumentParser(description='Run this program with "python -u %s" if you want to disable buffering of its output.' % sys.argv[0])
302        parser.add_argument('-path', type=ensureDir, required=True, help='Path to the Framsticks library (.dll or .so or .dylib) without trailing slash.')
303        parser.add_argument('-lib', required=False, help='Library name. If not given, "frams-objects.dll" (or .so or .dylib) is assumed depending on the platform.')
304        parser.add_argument('-simsettings', required=False, help="The name of the .sim file with settings for evaluation, mutation, crossover, and similarity estimation. If not given, \"eval-allcriteria.sim\" is assumed by default. Must be compatible with the \"standard-eval\" expdef. If you want to provide more files, separate them with a semicolon ';'.")
305        parser.add_argument('-genformat', required=False, help='Genetic format for the demo run, for example 4, 9, or S. If not given, f1 is assumed.')
306        return parser.parse_args()
307
308
309def ensureDir(string):
310        if os.path.isdir(string):
311                return string
312        else:
313                raise NotADirectoryError(string)
314
315
316if __name__ == "__main__":
317        # A demo run.
318
319        # TODO ideas:
320        # - check_validity with three levels (invalid, corrected, valid)
321        # - a pool of binaries running simultaneously, balance load - in particular evaluation
322
323        parsed_args = parseArguments()
324        framsLib = FramsticksLib(parsed_args.path, parsed_args.lib, parsed_args.simsettings)
325
326        print("Sending a direct command to Framsticks library that calculates \"4\"+2 yields", frams.Simulator.eval("return \"4\"+2;"))
327
328        simplest = framsLib.getSimplest('1' if parsed_args.genformat is None else parsed_args.genformat)
329        print("\tSimplest genotype:", simplest)
330        parent1 = framsLib.mutate([simplest])[0]
331        parent2 = parent1
332        MUTATE_COUNT = 10
333        for x in range(MUTATE_COUNT):  # example of a chain of 10 mutations
334                parent2 = framsLib.mutate([parent2])[0]
335        print("\tParent1 (mutated simplest):", parent1)
336        print("\tParent2 (Parent1 mutated %d times):" % MUTATE_COUNT, parent2)
337        offspring = framsLib.crossOver(parent1, parent2)
338        print("\tCrossover (Offspring):", offspring)
339        print('\tDissimilarity of Parent1 and Offspring:', framsLib.dissimilarity([parent1, offspring], 1)[0, 1])
340        print('\tPerformance of Offspring:', framsLib.evaluate([offspring]))
341        print('\tValidity (genetic) of Parent1, Parent 2, and Offspring:', framsLib.isValid([parent1, parent2, offspring]))
342        print('\tValidity (simulation) of Parent1, Parent 2, and Offspring:', framsLib.isValidCreature([parent1, parent2, offspring]))
343        print('\tRandom genotype:', framsLib.getRandomGenotype(simplest, 2, 6, 2, 4, 100, True))
Note: See TracBrowser for help on using the repository browser.