import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d import numpy as np import os import sys def wykres(threadsy,capacitiesy,wyniki,iteracje,atrybut): kolory=['red','green','blue'] alfy=[0.1,0.1,0.8] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.view_init(30,-150) for i,iteracja in enumerate(iteracje): X, Y = np.meshgrid(threadsy, capacitiesy) #X,Y are arrays of same size, 2D, with separated indexes Z=np.empty(X.shape) Z.fill(np.nan) #instead of nan, one could set -10 to clearly see on the plot which values are missing for wynik in wyniki: threads,capacity,slownik=wynik if slownik['iter']==iteracja: print threads,capacity,slownik[atrybut] if atrybut in slownik else np.nan threadsindex=threadsy.index(threads) capacitiesindex=capacitiesy.index(capacity) Z[capacitiesindex,threadsindex]=slownik[atrybut] if atrybut in slownik else np.nan print Z ktore=len(kolory)-len(iteracje)+i ax.plot_surface(X, Y, Z, rstride=1, cstride=1, color=kolory[ktore], linewidth=1, alpha=alfy[ktore],edgecolor=(0,0,0,alfy[ktore])) ax.set_xlabel('threads') ax.set_ylabel('capacity') ax.set_zlabel(atrybut) ax.set_xticks(threadsy) ax.set_yticks(capacitiesy) ax.set_zlim((0,ax.get_zlim()[1])) #scale from (forced) zero to auto plt.savefig("wykres_%d_%s.png" % (iteracja,atrybut)) #plt.show() #if you wanted to rotate the chart interactively plt.close() ####################################################### main ####################################################### threadsy=set() #used to store values of 'threads' that are in use. This is helpful because later a single multi-dimensional numpy array is used to keep all results capacitiesy=set() #used to store values of 'capacity' that are in use wyniki=[] #list of all results os.chdir(sys.argv[1]) #files with plots will also be created in that directory for plik in os.listdir('.'): if plik.endswith(".out") and plik.count('_')==2: podzielone=plik.replace('.','_').split('_') threads=int(podzielone[1]) capacity=int(podzielone[2]) threadsy.add(threads) capacitiesy.add(capacity) plik = open("test_%d_%d.out" % (threads,capacity), "r") #should be the same name as the original file slowniki = [] for linia in plik: linia=linia.strip() if linia.startswith("[INFO] Script::Message - iter="): slownik={} for pole in linia.split(' '): if '=' in pole: pole=pole.strip(',') pole=pole.split('=') slownik[pole[0]]=float(pole[1]) print slownik slowniki.append(slownik) wyniki.append((threads,capacity,slownik)) plik.close() threadsy=sorted(list(threadsy)) capacitiesy=sorted(list(capacitiesy)) print threadsy print capacitiesy wykres(threadsy,capacitiesy,wyniki,[3.0,6.0,9.0],'simsteps') wykres(threadsy,capacitiesy,wyniki,[3.0,6.0,9.0],'evals') wykres(threadsy,capacitiesy,wyniki,[3.0,6.0,9.0],'migrations') wykres(threadsy,capacitiesy,wyniki,[4.0,9.0],'fit_avg') wykres(threadsy,capacitiesy,wyniki,[4.0,9.0],'fit_max') #draws simple 2D plots of progress in consecutive iter's: #x=[] #y1=[] #y2=[] #for s in slowniki: # x.append(s['iter']) # y1.append(s['avg_fit']) # y2.append(s['max_fit']) #plt.plot(x,y1) #plt.plot(x,y2) #plt.savefig("avg_%d_%d.png" % (threads,capacity)) #plt.close()