source: experiments/frams/foraminifera/data/scripts/foraminifera.inc @ 1167

Last change on this file since 1167 was 1152, checked in by Maciej Komosinski, 3 years ago

Foraminifera show has now smaller world compared to expdef (and adjusted other parameters), so it is better suited for visualization and demonstration

File size: 9.2 KB
Line 
1
2function create_genotype(proculus_size, number_of_chambers, rgbstring, lastchambergrowth) //lastchambergrowth is 0..1
3{
4        const shift = 0.7;
5        const angle_delta = 0.8;
6        const angle_delta_delta = -0.01;
7        const growing = 1.07; //7% growth
8
9        var str = "//0s\nm:Vstyle=foram\n";
10        var size = proculus_size;
11        for(var i = 0; i < number_of_chambers; i++)
12        {
13                var effectivesize = size; //'effectivesize' is introduced only to consider the last chamber
14                if (i == number_of_chambers - 1) //last chamber
15                {
16                        effectivesize *= lastchambergrowth;
17                        size = size * (1.35 - 0.35 * lastchambergrowth); //last iteration: 'size' is only used for shifting (dx). The last chamber emerges at the surface of the previous one
18                        if (lastchambergrowth < 1)
19                                rgbstring = "0.9,0.9,0.9,i=\"growing=%g\"" % lastchambergrowth; //when the last chamber is growing, make it bright gray and add extra information in its "i" field
20                }
21                effectivesize = Math.max(effectivesize, MIN_PART_SIZE);
22                str += "p:sh=1,sx=%g,sy=%g,sz=%g,rz=3.14159265358979,vr=%s\n" % effectivesize % effectivesize % effectivesize % rgbstring;
23                if (i > 0)
24                        str += "j:%d,%d,sh=1,dx=%g,rz=%g\n" % (i - 1) % i % (size * shift) % (angle_delta + i * angle_delta_delta);
25                size *= growing;
26        }
27        return str;
28}
29
30function setGenotype(mode)
31{
32        if (mode->opt == "growth")
33        {
34                mode->cr.data->genes = mode->parent_genes;
35                mode->cr.data->lifeparams = mode->parent_lifeparams;
36        }
37
38        else if (mode->opt == "birth")
39        {
40                foram_uid += 1;
41                var new_id = "c" + string(foram_uid);
42                mode->cr.data->genes = String.deserialize(String.serialize(mode->genes));
43                mode->cr.data->lifeparams = {"max_energy_level" : mode->energy0, "gen" : mode->gen,  "hibernated" : 0, "species" : mode->species, "reproduce" : 0, "dir" : randomDir(), "dir_counter" : Math.random(int(secToSimSteps(ExpProperties.dir_change_sec))), "chamber_growth" : -1, "division_time" : -1, "uid" : new_id};
44
45                var oper = "cloning";
46                var inherit = [1.0];
47                if (mode->parentsuids.size > 1)
48                {
49                        oper = "cross-over";
50                        inherit = [0.5, 0.5];
51                }
52
53                var dict = {"Time": Simulator.stepNumber, "FromIDs": mode->parentsuids, "ID": new_id, "Inherited": inherit, "Operation": oper, "Kind" : mode->gen};
54                if (ExpProperties.print_evol_progress == 1)
55                        Simulator.print("[OFFSPRING] " + String.serialize(dict));
56        }
57}
58
59function getEnergy0(radius)
60{
61        return energyFromVolume(micronsToFrams(radius), 1);
62}
63
64function gametsDivision(parent_energy, energy0)
65{
66        var number = 1;
67        var result = parent_energy;
68        while ((result - ExpProperties.divisionCost) >= energy0)
69        {
70                result = (result - ExpProperties.divisionCost) / 2;
71                number *= 2;
72        }
73        //Simulator.print("parent: " + parent_energy + " result: " + result + " number " + number);
74        return {"energy" : result, "number" : number};
75}
76
77function reproduce_haploid(parent, parent2, clone)
78{
79        var number, energy0, new_genes, gen;
80        if (clone == 1)
81        {
82                var offspring = gametsDivision(parent.energy, getEnergy0(getGene(parent, "energies0", 0)[0]));
83                energy0 = offspring->energy;
84                number = offspring->number;
85                new_genes = parent.data->genes;
86                parent.data->lifeparams->gen = 1 - parent.data->lifeparams->gen; //because of reversal of "gen" in createOffspring function
87                gen = parent.data->lifeparams->gen;
88        }
89        else
90        {
91                var offspring1 = gametsDivision(parent.energy, getEnergy0(getGene(parent, "energies0", 0)[1]));
92                var offspring2 = gametsDivision(parent2.energy, getEnergy0(getGene(parent2, "energies0", 0)[1]));
93                energy0 = (offspring1->energy + offspring2->energy);
94                number = ExpProperties.gametSuccessRate * (offspring1->number + offspring2->number) / 2;
95                new_genes = [parent.data->genes, parent2.data->genes];
96                gen = 1 - parent.data->lifeparams->gen;
97
98                if (ExpProperties.logging == 1)
99                {
100                        log(createLogVector(parent, parent.energy), ExpProperties.logPref + "repro_energies_log.txt");
101                        log(createLogVector(parent2, parent2.energy), ExpProperties.logPref + "repro_energies_log.txt");
102                        log(createLogVector(parent, number), ExpProperties.logPref + "repro_num_log.txt");
103                        log(createLogVector(parent, parent.lifespan), ExpProperties.logPref + "lifespan_log.txt");
104                        log(createLogVector(parent2, parent2.lifespan), ExpProperties.logPref + "lifespan_log.txt");
105                }
106        }
107
108        //Simulator.print("haploid number of offspring: " + number + " energ0: " + energy0);
109
110        for (var j = 0; j < number; j++)
111        {
112                createOffspring(create_genotype(ExpProperties.chamber_proculus_diplo, 1, colors[1], 1), energy0, new_genes, parent.data->lifeparams, [parent.data->lifeparams->uid, parent2.data->lifeparams->uid]);
113        }
114}
115
116function reproduce_diploid(parent)
117{
118        var offspring = gametsDivision(parent.energy, getEnergy0(getGene(parent, "energies0", 0)[0]));
119        var energy0 = offspring->energy;
120        var number = offspring->number;
121
122        if (ExpProperties.logging == 1)
123        {
124                log(createLogVector(parent, parent.energy), ExpProperties.logPref + "repro_energies_log.txt");
125                log(createLogVector(parent, number), ExpProperties.logPref + "repro_num_log.txt");
126                log(createLogVector(parent, parent.lifespan), ExpProperties.logPref + "lifespan_log.txt");
127        }
128
129        //Simulator.print("diploid number of offspring: " + number+ " energ0: " + energy0);
130
131        for (var j = 0; j < number / 2; j++)
132        {
133                var crossed = 0;
134                //crossover
135                if (Math.rnd01 < ExpProperties.crossprob)
136                {
137                        crossover(parent, "min_repro_energies");
138                        crossed = 1;
139                }
140
141                for (var k = 0; k < 2; k++)
142                {
143                        createOffspring(create_genotype(ExpProperties.chamber_proculus_haplo, 1, colors[0], 1), energy0, parent.data->genes[0], parent.data->lifeparams, [parent.data->lifeparams->uid]);
144                }
145
146                //reverse of crossover for fossilization
147                if (crossed == 1)
148                {
149                        crossover(parent, "min_repro_energies");
150                        crossed = 0;
151                }
152
153        }
154}
155
156function reproduce_parents(species)
157{
158        var parent1 = null;
159        var parent2 = null;
160        var pop = Populations[0];
161        for (var i = pop.size - 1; i >= 0; i--)
162        {
163                if (pop[i].data->lifeparams->reproduce == 1 && pop[i].data->lifeparams->species == species)
164                {
165                        if ((pop[i].data->lifeparams->gen == 1) || ((pop[i].data->lifeparams->gen == 0) && ExpProperties.stress == 0))
166                        {
167                                continue;
168                        }
169                        else if (parent1 == null)
170                        {
171                                parent1 = pop[i];
172                        }
173                        else if (parent2 == null)
174                        {
175                                parent2 = pop[i];
176                        }
177                        if (parent1 != null && parent2 != null)
178                        {
179                                //when parents are ready for reproduction start gametogenesis
180                                if (parent1.data->lifeparams->division_time == -1 && parent2.data->lifeparams->division_time == -1)
181                                {
182                                        var time = int(secToSimSteps(ExpProperties.gametoPeriodSec));
183                                        parent1.data->lifeparams->division_time = time;
184                                        parent2.data->lifeparams->division_time = time;
185                                        parent1.idleen = 0;
186                                        parent2.idleen = 0;
187                                        //Simulator.print("parents "+parent1.uid + " " + parent2.uid + " ready to repro: "+Simulator.stepNumber);
188                                }
189                                //when gametogenesis is finished fuse gamets
190                                else if (parent1.data->lifeparams->division_time == 0 && parent2.data->lifeparams->division_time == 0)
191                                {
192                                        reproduce_haploid(parent1, parent2, 0);
193                                        //print_repro_info(parent1);
194                                        //print_repro_info(parent2);
195                                        pop.kill(parent1);
196                                        pop.kill(parent2);
197                                        parent1 = null;
198                                        parent2 = null;
199                                }
200                        }
201                }
202        }
203}
204
205function readyToRepro(cr)
206{
207        var reproduced = 1;
208
209        if (cr.data->lifeparams->gen == 1)
210        {
211                reproduce_diploid(cr);
212        }
213
214        else if (ExpProperties.stress == 0)
215        {
216                reproduce_haploid(cr, null, 1);
217        }
218
219        else
220        {
221                if (cr.signals.size == 0)
222                {
223                        cr.signals.add("repro" + cr.data->lifeparams->species);
224                        cr.signals[0].power = 1;
225                }
226                reproduced = 0;
227                cr.data->lifeparams->reproduce = 1;
228        }
229
230        if (reproduced == 1)
231        {
232                //print_repro_info(cr);
233                Populations[0].kill(cr);
234        }
235
236        return reproduced;
237}
238
239function foramReproduce(cr)
240{
241        var properEnergy = cr.energy >= getGene(cr, "min_repro_energies", 0)[cr.data->lifeparams->gen];
242        var reproduced = 0;
243
244        //if creature has proper energy
245        if ( properEnergy )
246        {
247                //reproduce with probability repro_prob
248                if (Math.rnd01 <= ExpProperties.repro_prob) //TODO env trigger
249                {
250                        reproduced = readyToRepro(cr);
251                }
252                else if (cr.signals.receive("repro" + cr.data->lifeparams->species) > 0)
253                {
254                        reproduced = readyToRepro(cr);
255                }
256                if (reproduced == 1)
257                        return 1;
258        }
259
260        else if (!properEnergy)
261        {
262                cr.signals.clear();
263                cr.data->lifeparams->reproduce = 0;
264        }
265
266        return 0;
267}
268
269function crossover(parent, gene)
270{
271        var tmp = parent.data->genes[0][gene];
272        parent.data->genes[0][gene] = parent.data->genes[1][gene];
273        parent.data->genes[1][gene] = tmp;
274}
275
276function createOffspring(geno, energy, parent_genes, parent_lifeparams, parentsuids)
277{
278        curColor = colors[1 - parent_lifeparams->gen];
279        var cr = createAndRotate(geno, 0, 2 * Math.pi, 0);
280        cr.energy0 = energy;
281        cr.energy = cr.energy0;
282        setGenotype({"opt" : "birth", "cr" : cr, "gen" : 1 - parent_lifeparams->gen, "species" : parent_lifeparams->species, "energy0" : cr.energy0, "genes" : parent_genes, "parentsuids" : parentsuids});
283        placeRandomlyNotColliding(cr);
284}
285
286function print_repro_info(cr)
287{
288        if (ExpProperties.print_evol_progress == 1)
289                Simulator.print("Reproduced " + cr.data->lifeparams->gen + " of species " + cr.data->lifeparams->species + " energy: " + cr.energy);
290}
Note: See TracBrowser for help on using the repository browser.