source: experiments/frams/foraminifera/data/scripts/foraminifera.expdef @ 489

Last change on this file since 489 was 488, checked in by oriona, 9 years ago

Reproduction treshold dependent on gene.

File size: 26.3 KB
Line 
1expdef:
2name:Reproduction of benthic foraminifera
3info:~
4Basic information about this simulation:
5www.framsticks.com/foraminifera
6
7Technical information:
8Genes and parameter values which control reproduction are stored in data->genes and data->lifeparams fields.
9
10genes:
11genes which are not encoded in Ff genotype:
12min_repro_energy - Minimum energy necessary for reproduction
13hibernation - Defines foram behavior in the case of no nutrients
14
15lifeparams:
16Physiological parameters of foraminifera:
17max_energy_level - maximum energy level reached so far
18gen - generation: 0 haploid, 1 diploid
19species - species: 0 not hibernating 1 hibernating
20hibernated - 0/1 foram is/isn't hibernated
21reproduce - 0/1 foram isn't/is ready for reproduction
22~
23code:~
24
25global chambers;
26global colors;
27global dir_change;
28global max_chamber_volume;
29global movePerStep;
30global nutrientenergywaiting;
31global o;
32global reprocounter;
33global changePeriod;
34global phase;
35global species_genes;
36
37@include "foraminifera.inc"
38
39// -------------------------------- experiment begin --------------------------------
40
41function onExpDefLoad()
42{
43        // define genotype and creature groups
44        GenePools.clear();
45        Populations.clear();
46        GenePools[0].name = "Unused";
47
48        var pop = Populations[0];
49        pop.name = "Forams";
50        pop.en_assim = 0;
51        pop.nnsim = 0;
52        pop.enableperf = 1;
53        pop.death = 1;
54        pop.energy = 1;
55        pop.selfmask = 0;
56        pop.othermask = 0;
57        //pop.selfmask = 0x20002; pop.othermask = 0x10002;
58        pop.perfperiod = 25;
59        pop.bodysim = 0;
60
61        pop = Populations.addGroup("Nutrients");
62        pop.nnsim = 0;
63        pop.enableperf = 0;
64        pop.death = 1;
65        pop.energy = 1;
66        pop.selfmask = 0;
67        pop.othermask = 0;
68        //pop.othermask = 0x10002;
69        pop.bodysim = 0;
70
71        pop = Populations.addGroup("ReticulopodiaNutrients");
72        pop.nnsim = 0;
73        pop.enableperf = 0;
74        pop.death = 0;
75        pop.energy = 0;
76        pop.selfmask = 0;
77        pop.othermask = 0;
78        pop.bodysim = 0;
79
80        //world
81        SignalView.mode = 1;
82        World.wrldwat = 200;
83        World.wrldsiz = micronsToFrams(40000);
84        World.wrldbnd = 1;
85        ExpProperties.stress = 1;
86        ExpProperties.creath = -0.99; //just above the bottom
87        ExpProperties.autorestart = 0;
88
89        //time
90        ExpProperties.secPerStep = 480;
91        ExpProperties.foramSpeedMmPerMin = 0.05;
92        movePerStep = getMovePerStep();
93
94        //ExpProperties.visualize = 1; //uncomment to visualize reticulopodia and indicate nutrients positions
95
96        //ExpProperties.logging = 1; //uncomment to enable logging simulation parameters to log files   
97
98        //reproduction
99        ExpProperties.foramPop = 20;   
100        ExpProperties.crossprob = 0;
101        ExpProperties.mutationprob = 0;
102        ExpProperties.repro_time = 720;
103        ExpProperties.gametoPeriod = 43200;
104        ExpProperties.divisionCost = 15.6;
105        reprocounter = 0;
106
107        species_genes = [];
108
109        init_chambers();
110
111        //morphology
112        dir_change = 30000;
113        ExpProperties.zone1_range = micronsToFrams(1000);
114        ExpProperties.zone2_range = micronsToFrams(3000);
115        ExpProperties.chamber_growth_time = 720;
116        ExpProperties.chamberCostPerSec = 0.000001;
117        ExpProperties.chamber_proculus_haplo = micronsToFrams(50);
118        ExpProperties.chamber_difference_haplo = 0.0;
119        ExpProperties.chamber_proculus_diplo = micronsToFrams(20);
120        ExpProperties.chamber_difference_diplo = micronsToFrams(8);
121
122        max_chamber_volume = [Vector.new(), Vector.new()];
123        for (var j = 0; j < 2; j++)
124        {
125                for (var i = 0; i < chambers[0].size; i++)
126                {
127                        max_chamber_volume[j].add(((volumeInMicrons(getProperty(j, "chamber_proculus")) + volumeInMicrons(getProperty(j, "chamber_proculus") + (i) * getProperty(j, "chamber_difference")))*(i+1))/2); 
128                }                                 
129        }
130
131        //energetics
132        ExpProperties.min_repro_energ_haplo = 4;
133        ExpProperties.min_repro_energ_diplo = 6;
134
135        ExpProperties.e_meta = 0.0000005;
136        ExpProperties.energy_hib = 0.0000001;
137        ExpProperties.energy_move = 0.0000005;
138
139        ExpProperties.energies0_haplo = energyFromVolume(micronsToFrams(20),1);
140        ExpProperties.energies0_diplo = energyFromVolume(micronsToFrams(1.25),1);
141        ExpProperties.feedtrans = 0.001;
142        ExpProperties.e_repro_cost_haplo = 0.3;
143        ExpProperties.e_repro_cost_diplo = 0.2;
144
145        ExpProperties.e_death_level_haplo = 0.5;
146        ExpProperties.e_death_level_diplo = 0.5;
147
148        //nutrients
149        changePeriod = 0;
150        phase = "low";
151        ExpProperties.foodperiod = 3600;
152        ExpProperties.foodPeriodChange = 0;
153        ExpProperties.nutrientradius = micronsToFrams(10);
154        ExpProperties.energy_nut = energyFromVolume(ExpProperties.nutrientradius,1);
155        ExpProperties.feedrate = 1;
156        ExpProperties.ingestion = 0.25;
157        nutrientenergywaiting = 0;
158        ExpState.totaltestedcr = 0;
159        ExpState.nutrient = "";
160       
161        addSpecies({"min_repro_energies" : [4,6]});
162        addSpecies({"min_repro_energies" : [4,8]});
163}
164
165@include "standard_placement.inc"
166
167function volumeInMicrons(radiusInFrams)
168{
169        return 4.0/3.0*Math.pi*Math.pow(framsToMicrons(radiusInFrams),3);
170}
171
172function energyFromVolume(base, isRadiusInFrams)
173{
174        if (isRadiusInFrams == 1) //radius in frams
175        {
176                return ExpProperties.picoCarbonPerMikro*volumeInMicrons(base);
177        }
178        else //volume in microns
179        {
180                return ExpProperties.picoCarbonPerMikro * base;
181        }
182}
183
184function getMovePerStep()
185{
186        return micronsToFrams((ExpProperties.foramSpeedMmPerMin/60)*1000)*ExpProperties.secPerStep;
187}
188
189function micronsToFrams(micrometers)
190{
191        return micrometers*0.025;
192}
193
194function framsToMicrons(framsworldunits)
195{
196        return framsworldunits/0.025;
197}
198
199function getProperty(gen, prop_id)
200{
201        var ploid = "haplo";
202        if (gen == 1) ploid = "diplo";
203        return ExpProperties.[prop_id + "_" + ploid];
204}
205
206function getGene(cr, gen_id, gen_set)
207{
208        if (cr.data->lifeparams->gen == 0)
209                return cr.data->genes[gen_id];
210        else
211                return cr.data->genes[gen_set][gen_id];
212}
213
214function addForam(species, iter, chambernum, ploid)
215{
216        var geno = createForamMorphology(species_genes[species]->morphotype, ploid, chambernum);
217        var cr = Populations[0].add(geno);
218        cr.name = "Initial creature" + species + "_" + iter;
219        placeCreatureRandomly(cr, 0, 0);
220        cr.energy0 = energyFromVolume(max_chamber_volume[ploid][chambernum],0);
221        cr.energy = cr.energy0;
222        setGenotype({"opt" : 0, "cr" : cr, "species" : species, "energy0" : cr.energy0, "genes" : species_genes[species]});
223        if (ploid == 1)
224        {
225                cr.data->lifeparams->gen = 1;
226                cr.data->genes = [cr.data->genes, cr.data->genes]; //TODO two different genes sets
227        }
228}
229
230function addInitialForam(species, iter)
231{
232        var ploid = 0;
233        if (Math.rnd01 > 0.5)
234        {
235                ploid = 1;
236        }       
237        //add new foram with random energy bewtween starting energy and reproduction treshold
238        addForam(species, iter, int(Math.rndUni(0,species_genes[species]->min_repro_energies[ploid])),ploid);
239}
240
241//new species can be added as a dictionary with parameter values that are different than default values
242function addSpecies(new_genes)
243{
244        species_genes.add({"min_repro_energies" : [4,6], "energies0" : [20, 1.25], "hibernation" : 0, "morphotype" : 0});
245        for (var i = 0; i < new_genes.size; i++)
246        {
247                var key = new_genes.getKey(i);
248                species_genes[species_genes.size-1][key] = new_genes[key];
249        }
250}
251
252function onExpInit()
253{
254        Populations[0].clear();
255        Populations[1].clear();
256        Populations[2].clear(); //reticulopodia and nutrients
257
258        if (species_genes.size == 0)
259        {
260                addSpecies({}); //default
261        }
262
263        for (var spec = 0; spec < species_genes.size; spec++)
264        {
265                for (var i = 0; i < ExpProperties.foramPop; i++)
266                {
267                        addInitialForam(spec, i);       
268                }
269        }
270        o = Populations[0][0].getMechPart(0).orient.clone();
271        ExpState.totaltestedcr = 0;
272}
273
274function onExpLoad()
275{
276        for (var pop in Populations)
277                pop.clear();
278
279        Loader.addClass(sim_params.*);
280        Loader.setBreakLabel(Loader.BeforeUnknown, "onExpLoad_Unknown");
281        Loader.run();
282
283        Simulator.print("Loaded " + Populations[0].size + " Forams and " + Populations[1].size + " nutrient objects");
284}
285
286function onExpLoad_Unknown()
287{
288        if (Loader.objectName == "org") // saved by the old expdef
289        {
290                var g = Genotype.newFromString("");
291                Loader.currentObject = g;
292                Interface.makeFrom(g).setAllDefault();
293                Loader.loadObject();
294                var cr = Populations[0].add(g);
295                if (cr != null)
296                {
297                        //cr.rotate(0,0,Math.rnd01*Math.twopi);
298                        if ((typeof(g.data->genes) == "Vector") && (g.data->genes.size >= 3))
299                        {
300                                // [x,y,energy]
301                                cr.move(g.data->genes[0] - cr.center_x, g.data->genes[1] - cr.center_y, 0);
302                                cr.energy = g.data->genes[2];
303                        }
304                        else
305                        {
306                                cr.move(Math.rnd01 * World.wrldsiz - cr.center_x, Math.rnd01 * World.wrldsiz - cr.center_y, 0);
307                        }
308                }
309        }
310        else if (Loader.objectName == "Creature")
311        {
312                Loader.currentObject = CreatureSnapshot.new();
313                Loader.loadObject();
314                Populations[0].add(Loader.currentObject);
315        }
316}
317
318function onExpSave()
319{
320        File.writeComment("saved by '%s.expdef'" % Simulator.expdef);
321
322        var tmpvec = [], i;
323
324        for(var cr in Populations[1])
325                tmpvec.add([cr.center_x, cr.center_y, cr.energy]);
326
327        ExpState.nutrient = tmpvec;
328        File.writeObject(sim_params.*);
329        ExpState.nutrient = null; //vectors are only created for saving and then discarded
330
331        for (var cr in Populations[0])
332                File.writeObject(cr);
333}
334
335// -------------------------------- experiment end --------------------------------
336
337// -------------------------------- foram begin -----------------------------------
338
339function setForamMeta(cr)
340{
341        //percent of current energy
342        cr.idleen = (ExpProperties.e_meta * cr.energy)*ExpProperties.secPerStep;
343}
344
345function lastChamberNum(cr)
346{
347        return cr.numparts-1;
348}
349
350function getZoneRange(cr, zone_num)
351{
352        return ExpProperties.["zone"+zone_num+"_range"];
353}
354
355function onForamsBorn(cr)
356{
357        setForamMeta(cr);
358        if (ExpProperties.visualize == 1)
359        {
360                var ret = Populations[2].add("//0\np:sh=3,sx=0.01,sy="+getZoneRange(cr,1)+",sz="+getZoneRange(cr,1)+",ry=1.57,vr=1.0,1.0,1.0");
361                cr.data->reticulopodiacreature = ret;
362        }
363}
364
365function placeRandomlyNotColliding(cr)
366{
367        var retry = 100; //try 100 times
368        while (retry--)
369        {
370                placeCreatureRandomly(cr, 0, 0);
371                if (!cr.boundingBoxCollisions(0))
372                        return cr;
373        }
374
375        Populations[0].delete(cr);
376}
377
378function visualization(cr)
379{
380        var has_ret = 0;
381
382        if (cr.data->reticulopodiacreature != null)
383        {
384                if (Populations[2].findUID(cr.data->reticulopodiacreature.uid) != null)
385                {
386                        has_ret = 1;
387                }
388        }
389
390        return has_ret;
391}
392
393function foramGrow(cr, chamber_num)
394{
395        if ((chamber_num+1) < chambers[cr.data->lifeparams->species].size)
396        {
397                var geno = createForamMorphology(getGene(cr, "morphotype", 0), cr.data->lifeparams->gen, chamber_num+1);
398                var cr2 = Populations[0].add(geno);
399
400                cr2.energy0 = cr.energy;
401                cr2.energy = cr2.energy0;
402
403                setGenotype({"cr" : cr2, "parent_genes" : cr.data->genes, "parent_lifeparams" : cr.data->lifeparams, "opt" : 2, "energy0" : cr.energy0});
404                cr2.moveAbs(cr.center_x - cr2.size_x / 2, cr.center_y - cr2.size_y / 2, cr.pos_z);
405                setForamMeta(cr2);
406
407                if (visualization(cr))
408                {
409                        Populations[2].delete(cr.data->reticulopodiacreature);
410                }
411                Populations[0].delete(cr);
412        }
413}
414
415function stepToNearest(cr)
416{
417        var p = cr.getMechPart(0);
418        var n = cr.signals.receiveSet("nutrient", getZoneRange(cr,2));
419
420        //if signals are received find the source of the nearest
421        if (n.size > 0)
422        {
423                var i;
424                var mp;
425                var distvec = XYZ.new(0, 0, 0);
426                var dist;
427                var mindist = 100000000000.0;
428                var mindistvec = null;
429                var eating = 0;
430
431                for (i = 0; i < n.size; i++)
432                {
433                        mp = n[i].value.getMechPart(0);
434                        distvec.set(mp.pos);
435                        distvec.sub(p.pos);
436                        dist = distvec.length;
437                        if (dist < getZoneRange(cr,1))
438                        {
439                                if (n[i].value != null)
440                                {
441                                        energyTransfer(cr, n[i].value);
442                                        eating = 1;
443                                }
444                        }
445                        else if (eating == 0 && cr.data->lifeparams->hibernated == 0 && dist < mindist)
446                        {
447                                mindist = dist;
448                                mindistvec = distvec.clone();
449                        }
450                }
451
452                if (!eating && cr.data->lifeparams->hibernated == 0)
453                {
454                        mindistvec.normalize();
455                        mindistvec.scale(-1*movePerStep);
456                        cr.localDrive = mindistvec;
457                        moveEnergyDec(cr);
458                }
459
460                return 1;
461        }
462       
463        else
464        {
465                return 0;
466        }
467}
468
469function moveEnergyDec(cr)
470{
471        if (cr.data->lifeparams->hibernated == 0)
472        {
473                //percent of maximal energy
474                cr.energy_m += (ExpProperties.energy_move * cr.data->lifeparams->max_energy_level)*ExpProperties.secPerStep;
475        }
476}
477
478function fence(pos)
479{
480        return Math.min(Math.max(0,pos),World.wrldsiz);
481}
482
483function foramMove(cr)
484{
485        //TODO moving inside sediment?
486
487        //adjustment in z axis
488        cr.moveAbs(fence(cr.pos_x), fence(cr.pos_y), 0);
489
490        //are there any nutrients in zone 1 or 2?
491        {
492                var moved = stepToNearest(cr); //TODO weighted sum of distance and energy
493                if (moved==1)
494                {
495                        return;
496                }
497        }
498
499        //no nutrients in zone 2
500        if (getGene(cr, "hibernation",0) == 1)
501        {
502                reverseHib(cr);
503                cr.localDrive = XYZ.new(0,0,0);
504        }
505        //random move
506        else if (Simulator.stepNumber%int(dir_change/ExpProperties.secPerStep) == 0)
507        {
508                cr.data->lifeparams->dir = randomDir();
509                cr.localDrive = cr.data->lifeparams->dir;
510                moveEnergyDec(cr);
511        }
512        else
513        {
514                cr.localDrive = cr.data->lifeparams->dir;
515        }
516}
517
518function randomDir()
519{
520        var dir = (Math.rndUni(-ExpProperties.zone2_range, ExpProperties.zone2_range), Math.rndUni(-ExpProperties.zone2_range, ExpProperties.zone2_range), 0); 
521        dir.normalize();
522        dir.scale(-1*movePerStep);
523        return dir;
524}
525
526function energyTransfer(cr1, cr2)
527{
528        cr1.localDrive = XYZ.new(0,0,0);
529        var e =  ExpProperties.feedtrans*cr1.energy;//ExpProperties.feedtrans*cr1.energy*ExpProperties.ingestion*ExpProperties.secPerStep; //TODO efficiency dependent on age
530        e = Math.min(cr2.energy, e);
531        e *= ExpProperties.secPerStep;
532        //Simulator.print("transferring "+e +"("+e*ExpProperties.ingestion+")"+" to "+cr1.name +" ("+ cr1.energy+") " +" from "+cr2.name+" ("+cr2.energy+") "+ e/ExpProperties.secPerStep+ " per sec");
533        cr2.energy_m = cr2.energy_m + e + 0.0000001;
534        cr1.energy_p = cr1.energy_p + e*ExpProperties.ingestion;
535        if (cr1.data->lifeparams->hibernated == 1)
536        {
537                reverseHib(cr1);
538        }
539}
540
541function reverseHib(cr)
542{
543        if (cr.data->lifeparams->hibernated == 1)
544        {
545                setForamMeta(cr); //unhibernate
546        }
547        else
548        {
549                cr.idleen = (ExpProperties.energy_hib * cr.energy)*ExpProperties.secPerStep; //hibernate
550        }
551        cr.data->lifeparams->hibernated = 1 - cr.data->lifeparams->hibernated;
552}
553
554
555function onForamsStep(cr)
556{
557        //checking for gametogenesis process
558        if (cr.data->lifeparams->division_time > 0)
559        {
560                cr.data->lifeparams->division_time = Math.max(cr.data->lifeparams->division_time-1,0);
561        }
562        //checking for end of gametogenesis
563        else if (cr.data->lifeparams->division_time == 0)
564        {
565                //waiting for gamets fusion
566        }
567        //checking for chamber growth process
568        else if (cr.data->lifeparams->chamber_growth > 0)
569        {
570                cr.data->lifeparams->chamber_growth = Math.max(cr.data->lifeparams->chamber_growth-1,0);
571                //Simulator.print("chamber growing, time left = " + cr.data->lifeparams->chamber_growth*ExpProperties.secPerStep);
572                cr.energy_m += ExpProperties.chamberCostPerSec * cr.energy * ExpProperties.secPerStep;
573
574                //Simulator.print("energy " + cr2.energy + " subtracting " + growth_cost);
575        }
576        //checking for end of chamber growth process
577        else if (cr.data->lifeparams->chamber_growth == 0)
578        {
579                foramGrow(cr, lastChamberNum(cr));
580                cr.data->lifeparams->chamber_growth = -1;
581                //Simulator.print("chamber "+ (lastChamberNum(cr) + 1) +" complete");
582        }
583        else
584        {
585                //update of metabolism rate
586                if (cr.data->lifeparams->hibernated == 0)
587                {
588                        setForamMeta(cr);
589                }
590
591                cr.getMechPart(0).orient.set(o);
592                if (visualization(cr))
593                {
594                        cr.data->reticulopodiacreature.moveAbs(cr.center_x-getZoneRange(cr,1), cr.center_y-getZoneRange(cr,1), cr.center_z-getZoneRange(cr,1)-getProperty(cr.data->lifeparams->gen, "chamber_proculus"));
595                }
596
597                if (deathConditions(cr) == 1)
598                {
599                        Populations[0].kill(cr);
600                        return;
601                }
602
603                foramMove(cr);
604
605                var repro = foramReproduce(cr);
606                if (repro == 1)
607                {
608                        return;
609                }
610
611                cr.data->lifeparams->max_energy_level = Math.max(cr.energy, cr.data->lifeparams->max_energy_level);
612
613                //cheking conditions of chamber growth process start
614                if  (lastChamberNum(cr) != chambers[0].size-1)
615                {
616                        if ((cr.data->lifeparams->max_energy_level >= energyFromVolume(max_chamber_volume[cr.data->lifeparams->gen][lastChamberNum(cr)],0)))   
617                        {
618                                cr.data->lifeparams->chamber_growth = int(ExpProperties.chamber_growth_time/ExpProperties.secPerStep);
619                        }       
620                }
621        }       
622}
623
624function deathConditions(cr)
625{
626        if ((cr.energy <= getProperty(cr.data->lifeparams->gen,"e_death_level")*cr.data->lifeparams->max_energy_level) || (Math.rnd01 < ExpProperties.hunted_prob))
627        {
628                return 1;
629        }
630        else
631                return 0;
632}
633
634function onForamsDied(cr)
635{
636        if (visualization(cr))
637        {
638                Populations[2].delete(cr.data->reticulopodiacreature);
639        }
640        //fossilization
641        var geno = GenePools[0].add(cr.genotype);
642        geno.data->genes = cr.data->genes;
643        geno.data->lifeparams = cr.data->lifeparams;
644        if (ExpProperties.logging == 1) Simulator.print("\"" + cr.name + "\" died...");
645        ExpState.totaltestedcr++;
646}
647
648// --------------------------------foram end -------------------------------------
649
650// -------------------------------- nutrient begin --------------------------------
651
652function createNutrientGenotype(nutrientradius)
653{
654        return "//0\np:sh=3,sx="+nutrientradius+",sy="+nutrientradius+",sz="+nutrientradius+",ry=1.5,vr=0.0,1.0,0.0";
655}
656
657function onNutrientsStep(cr)
658{
659        cr.moveAbs(cr.pos_x % World.wrldsiz, cr.pos_y % World.wrldsiz, 0.5);
660}
661
662function addNutrient()
663{
664        var cr = Populations[1].add(createNutrientGenotype(ExpProperties.nutrientradius));
665
666        cr.name = "Nutrients";
667        cr.idleen = 0;
668        cr.energy0 = ExpProperties.energy_nut;
669        cr.energy = cr.energy0;
670        cr.signals.add("nutrient");
671
672        cr.signals[0].value = cr;
673
674        placeCreatureRandomly(cr, 0, 0);
675        if (ExpProperties.visualize == 1)
676        {
677                var nutsize = ExpProperties.nutrientradius*10;
678                var nut = Populations[2].add("//0\np:sh=2,sx="+nutsize+",sy="+nutsize+",sz="+nutsize+",ry=1.5,vr=0.0,1.0,0.0");
679                cr.data->reticulopodiacreature = nut;
680                nut.moveAbs(cr.pos_x-1.5*nutsize, cr.pos_y-1.5*nutsize, 0.5);
681        }
682}
683
684function onNutrientsDied(cr)
685{
686        if (visualization(cr))
687        {
688                Populations[2].delete(cr.data->reticulopodiacreature);
689        }
690}
691
692function nutrientGrowth()
693{
694        if (ExpProperties.foodPeriodChange > 0)
695        {
696                        changePeriod += 1;
697                        if (phase=="low" && (changePeriod*ExpProperties.secPerStep) >= 23328000) //9 months
698                        {
699                                ExpProperties.foodperiod = ExpProperties.foodperiod/ExpProperties.foodPeriodChange;
700                                phase = "high";
701                                changePeriod = 0;
702                        }
703               
704                        else if (phase == "high" && (changePeriod*ExpProperties.secPerStep) >= 7776000) //3 months
705                        {
706                                ExpProperties.foodperiod = ExpProperties.foodperiod*ExpProperties.foodPeriodChange;
707                                phase = "low";
708                                changePeriod = 0;
709                        }
710        }
711        nutrientenergywaiting = nutrientenergywaiting + 1;
712        if (nutrientenergywaiting*ExpProperties.secPerStep >= ExpProperties.foodperiod)
713        {
714                for (var i = 0; i < ExpProperties.feedrate; i++)
715                {   
716                        addNutrient();
717                }
718
719                nutrientenergywaiting = 0.0;
720                Simulator.checkpoint();
721        }
722}
723
724// -------------------------------- nutrient end --------------------------------
725
726// -------------------------------- step begin --------------------------------
727
728function onStep()
729{
730
731        nutrientGrowth();
732        if (ExpProperties.logging == 1)
733        {
734                createStatistics();
735        }
736
737        //reproduction --------------------------------------------
738        reprocounter += 1;
739        if (reprocounter*ExpProperties.secPerStep > ExpProperties.repro_time)
740        {
741                reprocounter = 0;
742                reproduce_parents(0);
743                reproduce_parents(1);
744        }
745
746        //check for extinction -----------------------------------------------
747        if (Populations[0].size == 0)
748        {
749                if (ExpProperties.autorestart)
750                {
751                        Simulator.print("no more creatures, restarting...");
752                        onExpInit();
753                }
754                else
755                {
756                        Simulator.print("no more creatures, stopped.");
757                        Simulator.stop();
758                }
759        }
760        if (ExpProperties.maxSteps > 0)
761        {
762                if (Simulator.stepNumber >= ExpProperties.maxSteps)
763                        Simulator.stop();
764        }
765}
766
767function createStatistics()
768{       
769        var number = [];
770        var e_inc = [];
771        var e_nut = 0.0;
772
773        for (var s = 0; s < species_genes.size; s++)
774        {
775                number.add([0,0]);// [haplo][diplo]
776                e_inc.add([0,0]);
777        }
778
779        for (var i = 0; i < Populations[0].size; i++)
780        {
781                var cr = Populations[0].get(i);
782                var gen = cr.data->lifeparams->gen;
783                var species = cr.data->lifeparams->species;
784
785                number[species][gen] = number[species][gen] + 1;
786                e_inc[species][gen] = e_inc[species][gen] + cr.energy;
787        }
788
789        for (var i = 0; i < Populations[1].size; i++)
790        {
791                var cr = Populations[1].get(i);
792                e_nut += cr.energy;
793        }
794
795        var log_numbers = [];
796        var log_energies = [];
797
798        for (var s = 0; s < species_genes.size; s++)
799        {
800                for (var p = 0; p < 2; p++)
801                {
802                        log_numbers.add(number[s][p]);
803                        log_energies.add(e_inc[s][p]);
804                }
805        }
806       
807        log_numbers.add(Populations[1].size);
808        log_energies.add(e_nut);
809
810        log(log_numbers, "forams_log.txt");
811    log(log_energies,  "energies_log.txt");
812}
813
814function log(tolog, fname)
815{
816        var f = File.appendDirect(fname, "forams data");
817        f.writeString("" + Simulator.stepNumber);
818        for (var  i = 0; i < tolog.size; i++)
819        {
820                f.writeString(";" + tolog[i]);
821        }
822        f.writeString("\n");
823        f.close();
824}
825
826// -------------------------------- step end --------------------------------
827//TODO default params values in frams instead of microns/seconds
828
829@include "standard_events.inc"
830
831~
832
833property:
834id:visualize
835name:Show reticulopodia and nutrients
836type:d 0 1 0
837group:Foraminifera
838
839property:
840id:maxSteps
841name:Stop after the given number of simulation steps
842type:d 0 1000000 0
843
844property:
845id:foramSpeedMmPerMin
846name:Speed of foraminfera in mm/min
847type:f 0.1
848flags: 16
849group:Foraminifera
850
851property:
852id:gametSuccessRate
853name:Ratio of successful gamets
854type:f 0.001
855group:Foraminifera
856
857property:
858id:gametoPeriod
859name:Time of gametogenesis
860type:f 720
861group:Foraminifera
862
863property:
864id:picoCarbonPerMikro
865name:Picograms of carbon in cubed micrometer
866type:f 0.13
867group:Foraminifera
868
869property:
870id:secPerStep
871name:Seconds per simulation step
872type:f 60.0
873flags: 16
874group:Foraminifera
875
876property:
877id:e_repro_cost_haplo
878name:Cost of reproduction
879type:f 0.1 0.9 0.5
880group:Foraminifera
881
882property:
883id:divisionCost
884name:Cost of division in pG
885type:f
886group:Foraminifera
887
888property:
889id:e_repro_cost_diplo
890name:Cost of reproduction
891type:f 0.1 0.9 0.3
892group:Foraminifera
893
894property:
895id:chamber_growth_time
896name:Time of the chamber growth in seconds
897type:f
898group:Foraminifera
899
900property:
901id:chamberCostPerSec
902name:Cost of growning chamber per second
903type:f
904group:Foraminifera
905
906property:
907id:chamber_proculus_haplo
908name:Size of proculus
909type:f
910group:Foraminifera
911
912property:
913id:chamber_proculus_diplo
914name:Size of proculus
915type:f
916group:Foraminifera
917
918property:
919id:chamber_difference_haplo
920name:Difference in size between subsequent chambers
921type:f
922group:Foraminifera
923
924property:
925id:chamber_difference_diplo
926name:Difference in size between subsequent chambers
927type:f
928group:Foraminifera
929
930property:
931id:hunted_prob
932name:Probability of being hunted
933type:f 0 1 0
934group:Forminifera
935
936property:
937id:zone1_range
938name:Zone 1 range
939type:f 0 200
940group:Foraminifera
941
942property:
943id:zone2_range
944name:Zone 2 range
945type:f 0 3000
946group:Foraminifera
947
948property:
949id:colors
950name:Haploid and diploid colors
951type:x
952group:Foraminifera
953
954property:
955id:min_repro_energ_haplo
956name:Min reproduction energy of forams
957type:f
958group:Foraminifera
959
960property:
961id:min_repro_energ_diplo
962name:Min reproduction energy of forams
963type:f
964group:Foraminifera
965
966property:
967id:repro_prob
968name:Probability of reproduction
969type:f 0 1 0.8
970group:Foraminifera
971
972property:
973id:energies0_haplo
974name:Energy of offspring from diploid forams
975type:f
976group:Foraminifera
977
978property:
979id:energies0_diplo
980name:Energy of offspring from diploid forams
981type:f
982group:Foraminifera
983
984property:
985id:e_death_level_haplo
986name:Minimal level of energy to sustain life of haploid
987type:f 0 20 0.2
988group:Foraminifera
989
990property:
991id:e_death_level_diplo
992name:Minimal level of energy to sustain life of diploid
993type:f 0 20 0.2
994group:Foraminifera
995
996property:
997id:energy_hib
998name:Energy used for hibernation during one step
999type:f 0 1 0.001
1000group:Foraminifera
1001
1002property:
1003id:energy_move
1004name:Energy used for movement during one step
1005type:f 0 20 0.001
1006group:Foraminifera
1007
1008property:
1009id:min_vol
1010name:Minimal volume for reproduction
1011type:f 100 900 100
1012group:Foraminifera
1013
1014property:
1015id:max_size
1016name:Maximal size
1017type:d 1 10 5
1018group:Foraminifera
1019
1020property:
1021id:foramPop
1022name:Initial forams population size
1023type:d 1 1000 100
1024group:Foraminifera
1025
1026property:
1027id:crossprob
1028name:Crossover probability
1029type:f 0 1 0
1030group:Foraminifera
1031
1032property:
1033id:mutationprob
1034name:Mutation probability
1035type:f 0 1 0
1036group:Foraminifera
1037
1038property:
1039id:e_meta
1040name:Idle metabolism
1041type:f 0 1
1042group:Energy
1043help:Each stick consumes this amount of energy in one time step
1044
1045property:
1046id:feedrate
1047name:Feeding rate
1048type:f 0 1000000
1049group:Energy
1050help:How fast energy is created in the world
1051
1052property:
1053id:foodPeriodChange
1054name:Set variable feed rate
1055type:f 0
1056group:Energy
1057
1058property:
1059id:ingestion
1060name:Ingestion rate
1061type:f
1062group:Energy
1063
1064property:
1065id:energy_nut
1066name:Nutrient energy
1067type:f 0 100000
1068group:Energy
1069
1070property:
1071id:feedtrans
1072name:Energy transfer per second
1073type:f 0 100000
1074group:Energy
1075
1076property:
1077id:foodperiod
1078name:Time between food occurrences
1079type:f 0 1000000
1080group:Energy
1081
1082property:
1083id:nutrientradius
1084name:Nutrient size
1085type:f 0.1 0.9 0.1
1086group:Energy
1087
1088property:
1089id:stress
1090name:Environmental stress
1091type:d 0 1 1
1092group:World
1093
1094property:
1095id:repro_trigger
1096name:Reproduction trigger
1097type:d 0 1 1
1098group:World
1099
1100property:
1101id:repro_time
1102name:Time before reproduction
1103type:d 0 10000
1104
1105property:
1106id:creath
1107name:Creation height
1108type:f -1 50
1109help:~
1110Vertical position (above the surface) where new Forams are revived.
1111Negative values are only used in the water area:
1112  0   = at the surface
1113-0.5 = half depth
1114-1   = just above the bottom~
1115
1116state:
1117id:nutrient
1118name:Nutrient locations
1119help:vector of vectors [x,y,energy]
1120type:x
1121flags:32
1122
1123property:
1124id:autorestart
1125name:Restart after extinction
1126help:Restart automatically this experiment after the last creature has died?
1127type:d 0 1
1128
1129state:
1130id:notes
1131name:Notes
1132type:s 1
1133help:~
1134You can write anything here
1135(it will be saved to the experiment file)~
1136
1137state:
1138id:totaltestedcr
1139name:Evaluated Forams
1140help:Total number of the Forams evaluated in the experiment
1141type:d
1142flags:16
1143
1144property:
1145id:logging
1146name:Log statistics to file
1147type:d 0 1 0
Note: See TracBrowser for help on using the repository browser.