1 | // This file is a part of the Framsticks GDK. |
---|
2 | // Copyright (C) 1999-2014 Maciej Komosinski and Szymon Ulatowski. See LICENSE.txt for details. |
---|
3 | // Refer to http://www.framsticks.com/ for further information. |
---|
4 | |
---|
5 | #ifndef _3D_H_ |
---|
6 | #define _3D_H_ |
---|
7 | |
---|
8 | #if defined SHP || defined __ANDROID__ |
---|
9 | #include <string.h> //memcpy |
---|
10 | #else |
---|
11 | #include <memory.h> //memcpy |
---|
12 | #endif |
---|
13 | |
---|
14 | /********************************** |
---|
15 | \file 3d.h 3d.cpp |
---|
16 | |
---|
17 | basic 3D classes and operators |
---|
18 | *********************************/ |
---|
19 | |
---|
20 | /// point in 3D space |
---|
21 | class Pt3D |
---|
22 | { |
---|
23 | public: |
---|
24 | double x, y, z; |
---|
25 | static bool report_errors; |
---|
26 | |
---|
27 | Pt3D(double _x, double _y, double _z) :x(_x), y(_y), z(_z) {} ///< constructor initializing all coords |
---|
28 | Pt3D(double xyz) :x(xyz), y(xyz), z(xyz) {} ///< all coords equal |
---|
29 | Pt3D() {} ///< coords will be not initialized! |
---|
30 | Pt3D(const Pt3D &p) :x(p.x), y(p.y), z(p.z) {} ///< copy from another point |
---|
31 | bool operator==(const Pt3D& p) { return (x == p.x) && (y == p.y) && (z == p.z); } |
---|
32 | void operator+=(const Pt3D& p) { x += p.x; y += p.y; z += p.z; } |
---|
33 | void operator-=(const Pt3D& p) { x -= p.x; y -= p.y; z -= p.z; } |
---|
34 | void operator*=(double d) { x *= d; y *= d; z *= d; } |
---|
35 | Pt3D operator*(const Pt3D &p) const { return Pt3D(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x); } |
---|
36 | void operator/=(double d) { x /= d; y /= d; z /= d; } |
---|
37 | //Pt3D operator+(const Pt3D& p) const {return Pt3D(x+p.x,y+p.y,z+p.z);} |
---|
38 | //Pt3D operator-(const Pt3D& p) const {return Pt3D(x-p.x,y-p.y,z-p.z);} |
---|
39 | Pt3D operator-() const { return Pt3D(-x, -y, -z); } |
---|
40 | Pt3D operator*(double d) const { return Pt3D(x*d, y*d, z*d); } |
---|
41 | Pt3D operator/(double d) const { return Pt3D(x / d, y / d, z / d); } |
---|
42 | bool allCoordsLowerThan(const Pt3D& p) const { return (x < p.x) && (y < p.y) && (z<p.z); } |
---|
43 | bool allCoordsHigherThan(const Pt3D& p) const { return (x>p.x) && (y > p.y) && (z > p.z); } |
---|
44 | void getMin(const Pt3D& p); |
---|
45 | void getMax(const Pt3D& p); |
---|
46 | /** vector length = \f$\sqrt{x^2+y^2+z^2}\f$ */ |
---|
47 | double operator()() const; |
---|
48 | /** vector length = \f$\sqrt{x^2+y^2+z^2}\f$ */ |
---|
49 | double length() const { return operator()(); } |
---|
50 | double length2() const { return x*x + y*y + z*z; } |
---|
51 | double distanceTo(const Pt3D& p) const; |
---|
52 | double manhattanDistanceTo(const Pt3D& p) const; |
---|
53 | /** calculate angle between (0,0)-(dx,dy), @return 1=ok, 0=can't calculate */ |
---|
54 | static int getAngle(double dx, double dy, double &angle); |
---|
55 | /** calculate 3 rotation angles translating (1,0,0) into 'X' and (0,0,1) into 'dir' */ |
---|
56 | void getAngles(const Pt3D& X, const Pt3D& dir); |
---|
57 | void vectorProduct(const Pt3D& a, const Pt3D& b); |
---|
58 | Pt3D vectorProduct(const Pt3D& p) const { return (*this)*p; } |
---|
59 | Pt3D entrywiseProduct(const Pt3D &p) const { return Pt3D(x*p.x, y*p.y, z*p.z); } ///< also known as Hadamard product or Schur product |
---|
60 | double dotProduct(const Pt3D& p) const { return x*p.x + y*p.y + z*p.z; } |
---|
61 | bool normalize(); |
---|
62 | }; |
---|
63 | |
---|
64 | Pt3D operator+(const Pt3D &p1, const Pt3D &p2); |
---|
65 | Pt3D operator-(const Pt3D &p1, const Pt3D &p2); |
---|
66 | |
---|
67 | class Pt3D_DontReportErrors |
---|
68 | { |
---|
69 | bool state; |
---|
70 | public: |
---|
71 | Pt3D_DontReportErrors() { state = Pt3D::report_errors; Pt3D::report_errors = false; } |
---|
72 | ~Pt3D_DontReportErrors() { Pt3D::report_errors = state; } |
---|
73 | }; |
---|
74 | |
---|
75 | /// orientation in 3D space = rotation matrix |
---|
76 | class Matrix44; |
---|
77 | |
---|
78 | class Orient |
---|
79 | { |
---|
80 | public: |
---|
81 | Pt3D x, y, z; ///< 3 vectors (= 3x3 matrix) |
---|
82 | |
---|
83 | Orient() {} |
---|
84 | Orient(const Orient& src) { x = src.x; y = src.y; z = src.z; } |
---|
85 | Orient(const Pt3D& a, const Pt3D& b, const Pt3D& c) :x(a), y(b), z(c) {} |
---|
86 | // Orient(const Pt3D& rot) {*this=rot;} |
---|
87 | Orient(const Matrix44& m); |
---|
88 | void operator=(const Pt3D &rot); |
---|
89 | void rotate(const Pt3D &); ///< rotate matrix around 3 axes |
---|
90 | |
---|
91 | void transform(Pt3D &target, const Pt3D &src) const; ///< transform a vector |
---|
92 | void revTransform(Pt3D &target, const Pt3D &src) const; ///< reverse transform |
---|
93 | Pt3D transform(const Pt3D &src) const { Pt3D t; transform(t, src); return t; } |
---|
94 | Pt3D revTransform(const Pt3D &src) const { Pt3D t; revTransform(t, src); return t; } |
---|
95 | |
---|
96 | void transform(Orient& target, const Orient& src) const; ///< transform other orient |
---|
97 | void revTransform(Orient& target, const Orient& src) const; ///< reverse transform other orient |
---|
98 | Orient transform(const Orient& src) const { Orient o; transform(o, src); return o; } ///< transform other orient |
---|
99 | Orient revTransform(const Orient& src) const { Orient o; revTransform(o, src); return o; } ///< reverse transform other orient |
---|
100 | |
---|
101 | void transformSelf(const Orient &rot) { Orient tmp; rot.transform(tmp, *this); *this = tmp; } |
---|
102 | void revTransformSelf(const Orient &rot) { Orient tmp; rot.revTransform(tmp, *this); *this = tmp; } |
---|
103 | |
---|
104 | void getAngles(Pt3D &) const; ///< calculate rotation from current matrix |
---|
105 | Pt3D getAngles() const { Pt3D ret; getAngles(ret); return ret; }; ///< calculate rotation from current matrix |
---|
106 | void lookAt(const Pt3D &X, const Pt3D &dir); ///< calculate orientation matrix from 2 vectors: X becomes (normalized) Orient.x, dir is the preferred "up" direction (Orient.z). Use lookAt(Pt3D) if only X is relevant. |
---|
107 | void lookAt(const Pt3D &X); ///< calculate orientation matrix from 1 vector, X becomes (normalized) Orient.x, the other coordinates are deterministic but not continuous. Use lookAt(Pt3D,Pt3D) if you need more control. |
---|
108 | |
---|
109 | bool normalize(); |
---|
110 | }; |
---|
111 | |
---|
112 | class Matrix44 |
---|
113 | { |
---|
114 | public: |
---|
115 | double m[16]; |
---|
116 | Matrix44() {} |
---|
117 | Matrix44(const Matrix44& src) { memcpy(m, src.m, sizeof(m)); } |
---|
118 | Matrix44(double *srcm) { memcpy(m, srcm, sizeof(m)); } |
---|
119 | Matrix44(const Orient &rot); |
---|
120 | |
---|
121 | const double& operator()(int i, int j) const { return m[i + 16 * j]; } |
---|
122 | const double& operator[](int i) const { return m[i]; } |
---|
123 | double& operator()(int i, int j) { return m[i + 16 * j]; } |
---|
124 | double& operator[](int i) { return m[i]; } |
---|
125 | |
---|
126 | void operator+=(const Pt3D &); ///< translate matrix |
---|
127 | void operator*=(const Pt3D &); ///< scale matrix |
---|
128 | void operator*=(double sc); ///< scale matrix |
---|
129 | }; |
---|
130 | |
---|
131 | extern Pt3D Pt3D_0; ///< zero vector |
---|
132 | extern Orient Orient_1; ///< standard unit matrix: 100 010 001 |
---|
133 | extern Matrix44 Matrix44_1; ///< standard unit matrix: 1000 0100 0010 0001 |
---|
134 | |
---|
135 | void rotate2D(double, double &, double &); ///< rotate 2d vector, given angle |
---|
136 | void rotate2D(double, double, double &, double &); ///< rotate 2d vector, given sin and cos |
---|
137 | double d2(double, double); ///< distance in 2D |
---|
138 | |
---|
139 | #endif |
---|