// This file is a part of the Framsticks GDK. // Copyright (C) 2002-2014 Maciej Komosinski and Szymon Ulatowski. See LICENSE.txt for details. // Refer to http://www.framsticks.com/ for further information. #include "neuroimpl-fuzzy.h" #include "neuroimpl-fuzzy-f0.h" #include //min,max int NI_FuzzyNeuro::countOuts(const Model *m, const Neuro *fuzzy) { int outputs=0; for(int i=0;igetNeuroCount();i++) for(int in=0;ingetNeuro(i)->getInputCount();in++) if (m->getNeuro(i)->getInput(in)==fuzzy) outputs++; return outputs; } int NI_FuzzyNeuro::lateinit() { int i, maxOutputNr; //check correctness of given parameters: string must not be null, sets&rules number > 0 if((fuzzySetsNr<1)||(rulesNr<1)||(fuzzySetString.len()==0)||(fuzzyRulesString.len()==0)) return 0; //error // this part contains transformation of fuzzy sets fuzzySets = new double[4*fuzzySetsNr]; //because every fuzzy set consist of 4 numbers // converts fuzzy string from f0 to table of fuzzy numbers type 'double' // (fill created space with numbers taken from string) // also checks whether number of fuzzy sets in the string equals declared in the definition if (FuzzyF0String::convertStrToSets(fuzzySetString, fuzzySets, fuzzySetsNr) != 0) return 0; //error // this part contains transformation of fuzzy rules and defuzzyfication parameters rulesDef = new int[2*rulesNr]; //for each rule remembers number of inputs and outputs //check correctness of string and fill in the rulesDef if (FuzzyF0String::countInputsOutputs(fuzzyRulesString, rulesDef, rulesNr) == 0) { defuzzParam = new double[rulesNr]; // parameters used in defuzyfication process // create space for rules according to rulesDef rules = new int*[rulesNr]; //list of rules... for (i=0; iowner, neuro)); return 1; //success } NI_FuzzyNeuro::~NI_FuzzyNeuro() { if(rules) //delete rows and columns of **rules { for (int i=0; i=0) && (set_nr0); j++) //minimumCut can not be <0, so if =0 then stop calculations { nrFuzzySet = rules[i][j*2 + 1]; // j*2 moves pointer through each output, +1 moves to nr of fuzzy set inputNr = rules[i][j*2]; // as above but gives input number minimumCut = min( minimumCut, TrapeziumFuzz(nrFuzzySet, getWeightedInputState(inputNr))); // value of membership function for this input and given fuzzy set } if ( (minimumCut>1) || (minimumCut<0) ) return 1; defuzzParam[i] = minimumCut; } return 0; } /** * Function calculates value of the membership function of the set given by wchich_fuzzy_set for given crisp value input_val * In other words, this function fuzzyficates given crisp value with given fuzzy set, returning it's membership function * @param which_fuzzy_set - 0 < number of set < fuzzySetsNr * @param input_val - crisp value of input in range <-1; 1> * @return value of membership function (of given input for given set) in range <0;1> or, if error occur, negative value */ double NI_FuzzyNeuro::TrapeziumFuzz(int which_fuzzy_set, double input_val) { double range=0, left=0, midleft=0, midright=0, right=0; if ( (which_fuzzy_set < 0) || (which_fuzzy_set > fuzzySetsNr) ) return -2; if ( (input_val < -1) || (input_val > 1) ) return -3; if (GetFuzzySetParam(which_fuzzy_set, left, midleft, midright, right) != 0) return -4; if ( (input_val < left) || (input_val > right) ) // greather than right value return 0; else if ( (input_val >= midleft) && (input_val <= midright) ) // in the core of fuzzy set return 1; else if ( (input_val >= left) && (input_val < midleft) ) // at the left side of trapezium { range = fabs(midleft - left); return fabs(input_val-left)/((range>0)?range:1); // quotient of distance between input and extreme left point of trapezium and range of rising side, or 1 } else if ( (input_val > midright) && (input_val <= right) ) // at the right side of trapezium { range = fabs(right - midright); return fabs(right-input_val)/((range>0)?range:1); // quotient of distance between input and extreme right point of trapezium and range of falling side, or 1 }; // should not occur return 0; } /** * Function conducts defuzzyfication process: multi-channel output values are calculates with singleton method (method of high). * For each rules, all outputs fuzzy sets are taken and cut at 'cut-level', that is at minumum membership function (of current rule). * For all neuro pseudo-outputs, answer is calculated according to prior computations. * In fact, there is one output with multi-channel answer and appropriate values are given to right channels. */ int NI_FuzzyNeuro::Defuzzyfication() { int i, j, nrIn, nrOut, out, set, outputsNr; double *numerators, *denominators, midleft, midright, unimp; outputsNr = getChannelCount(); numerators = new double[outputsNr]; denominators = new double[outputsNr]; for(i=0;i