source: cpp/frams/neuro/impl/neuroimpl-fuzzy.cpp @ 351

Last change on this file since 351 was 348, checked in by Maciej Komosinski, 10 years ago
  • explicit c_str() in SString instead of (const char*) cast
  • genetic converters and GenMan? are now thread-local which enables multi-threaded simulator separation
  • Property svn:eol-style set to native
File size: 8.0 KB
Line 
1// This file is a part of Framsticks SDK.  http://www.framsticks.com/
2// Copyright (C) 1999-2015  Maciej Komosinski and Szymon Ulatowski.
3// See LICENSE.txt for details.
4
5#include "neuroimpl-fuzzy.h"
6#include "neuroimpl-fuzzy-f0.h"
7#include <common/nonstd_stl.h> //min,max
8
9int NI_FuzzyNeuro::countOuts(const Model *m, const Neuro *fuzzy)
10{
11  int outputs=0;
12  for(int i=0;i<m->getNeuroCount();i++)
13     for(int in=0;in<m->getNeuro(i)->getInputCount();in++)
14        if (m->getNeuro(i)->getInput(in)==fuzzy) outputs++;
15  return outputs;
16}
17
18int NI_FuzzyNeuro::lateinit()
19{
20  int i, maxOutputNr;
21
22  //check correctness of given parameters: string must not be null, sets&rules number > 0
23  if((fuzzySetsNr<1)||(rulesNr<1)||(fuzzySetString.len()==0)||(fuzzyRulesString.len()==0))
24    return 0; //error
25
26  // this part contains transformation of fuzzy sets
27  fuzzySets = new double[4*fuzzySetsNr]; //because every fuzzy set consist of 4 numbers
28  // converts fuzzy string from f0 to table of fuzzy numbers type 'double'
29  // (fill created space with numbers taken from string)
30  // also checks whether number of fuzzy sets in the string equals declared in the definition
31  if (FuzzyF0String::convertStrToSets(fuzzySetString, fuzzySets, fuzzySetsNr) != 0)
32    return 0; //error
33
34  // this part contains transformation of fuzzy rules and defuzzyfication parameters
35  rulesDef = new int[2*rulesNr];    //for each rule remembers number of inputs and outputs
36  //check correctness of string and fill in the rulesDef
37  if (FuzzyF0String::countInputsOutputs(fuzzyRulesString.c_str(), rulesDef, rulesNr) == 0)
38  {
39    defuzzParam = new double[rulesNr]; // parameters used in defuzyfication process
40    // create space for rules according to rulesDef
41    rules = new int*[rulesNr];   //list of rules...
42    for (i=0; i<rulesNr; i++)    //...that contains rules body
43    {
44      rules[i] = new int[2*(rulesDef[2*i]+rulesDef[2*i+1])];  //each rule can have different number of inputs and outputs
45      defuzzParam[i] = 0; //should be done a little bit earlier, but why do not use this loop?
46    }
47    // fill created space with numbers taken from string
48    if (FuzzyF0String::convertStrToRules(fuzzyRulesString, rulesDef, rules, fuzzySetsNr, rulesNr, maxOutputNr) != 0)
49      return 0; //error
50  }
51  else
52    return 0; //error
53
54  setChannelCount(countOuts(neuro->owner, neuro));
55  return 1; //success
56}
57
58NI_FuzzyNeuro::~NI_FuzzyNeuro()
59{
60  if(rules) //delete rows and columns of **rules
61  {
62    for (int i=0; i<rulesNr; i++) SAFEDELETEARRAY(rules[i])
63    SAFEDELETEARRAY(rules)
64  }
65  SAFEDELETEARRAY(defuzzParam)
66  SAFEDELETEARRAY(rulesDef)
67  SAFEDELETEARRAY(fuzzySets)
68}
69
70int NI_FuzzyNeuro::GetFuzzySetParam(int set_nr, double &left, double &midleft, double &midright, double &right)
71{
72  if ( (set_nr>=0) && (set_nr<fuzzySetsNr) )
73  {
74    left = fuzzySets[4*set_nr];
75    midleft = fuzzySets[4*set_nr+1];
76    midright = fuzzySets[4*set_nr+2];
77    right = fuzzySets[4*set_nr+3];
78    return 0;
79  }
80  else
81    return 1;
82}
83
84/** Function conduct fuzzyfication of inputs and calculates - according to rules - crisp multi-channel output */
85void NI_FuzzyNeuro::go()
86{
87  if (Fuzzyfication()!=0)
88    return;
89  if (Defuzzyfication()!=0)
90    return;
91}
92
93/**
94* Function conduct fuzzyfication process - calculates minimum membership function (of every input) for each rule,
95* and writes results into defuzzParam - variable that contains data necessary for defuzzyfication
96*/
97int NI_FuzzyNeuro::Fuzzyfication()
98{
99  int i, j, nrIn, inputNr, nrFuzzySet;
100  double minimumCut; // actual minimal level of cut (= min. membership function)
101
102  // sets defuzzyfication parameters for each rule:
103  for (i=0; i<rulesNr; i++)
104  {
105    nrIn = rulesDef[2*i]; // nr of inputs in rule #i
106    minimumCut = 2; // the highest value of membership function is 1.0, so this value will definitely change
107    for (j=0; (j<nrIn)&&(minimumCut>0); j++) //minimumCut can not be <0, so if =0 then stop calculations
108    {
109      nrFuzzySet = rules[i][j*2 + 1]; // j*2 moves pointer through each output, +1 moves to nr of fuzzy set
110      inputNr = rules[i][j*2]; // as above but gives input number
111      minimumCut = min( minimumCut, TrapeziumFuzz(nrFuzzySet, getWeightedInputState(inputNr))); // value of membership function for this input and given fuzzy set
112    }
113    if ( (minimumCut>1) || (minimumCut<0) )
114      return 1;
115    defuzzParam[i] = minimumCut;
116  }
117  return 0;
118}
119
120/**
121* Function calculates value of the membership function of the set given by wchich_fuzzy_set for given crisp value input_val
122* In other words, this function fuzzyficates given crisp value with given fuzzy set, returning it's membership function
123* @param which_fuzzy_set - 0 < number of set < fuzzySetsNr
124* @param input_val - crisp value of input in range <-1; 1>
125* @return value of membership function (of given input for given set) in range <0;1> or, if error occur, negative value
126*/
127double NI_FuzzyNeuro::TrapeziumFuzz(int which_fuzzy_set, double input_val)
128{
129  double range=0, left=0, midleft=0, midright=0, right=0;
130
131  if ( (which_fuzzy_set < 0) || (which_fuzzy_set > fuzzySetsNr) )
132    return -2;
133  if ( (input_val < -1) || (input_val > 1) )
134    return -3;
135
136  if (GetFuzzySetParam(which_fuzzy_set, left, midleft, midright, right) != 0)
137    return -4;
138
139  if ( (input_val < left) || (input_val > right) ) // greather than right value
140    return 0;
141  else if ( (input_val >= midleft) && (input_val <= midright) ) // in the core of fuzzy set
142    return 1;
143  else if ( (input_val >= left) && (input_val < midleft) ) // at the left side of trapezium
144  {
145    range = fabs(midleft - left);
146    return fabs(input_val-left)/((range>0)?range:1); // quotient of distance between input and extreme left point of trapezium and range of rising side, or 1
147  }
148  else if ( (input_val > midright) && (input_val <= right) ) // at the right side of trapezium
149  {
150    range = fabs(right - midright);
151    return fabs(right-input_val)/((range>0)?range:1); // quotient of distance between input and extreme right point of trapezium and range of falling side, or 1
152  };
153
154  // should not occur
155  return 0;
156
157}
158
159/**
160* Function conducts defuzzyfication process: multi-channel output values are calculates with singleton method (method of high).
161* For each rules, all outputs fuzzy sets are taken and cut at 'cut-level', that is at minumum membership function (of current rule).
162* For all neuro pseudo-outputs, answer is calculated according to prior computations.
163* In fact, there is one output with multi-channel answer and appropriate values are given to right channels.
164*/
165int NI_FuzzyNeuro::Defuzzyfication()
166{
167  int i, j, nrIn, nrOut, out, set, outputsNr;
168  double *numerators, *denominators, midleft, midright, unimp;
169
170  outputsNr = getChannelCount();
171
172  numerators = new double[outputsNr];
173  denominators = new double[outputsNr];
174
175  for(i=0;i<outputsNr;i++) numerators[i] = denominators[i] = 0;
176
177  // for each rule...
178  for (i=0; i<rulesNr; i++)
179  {
180    nrIn = rulesDef[2*i]; // number of inputs in rule #i
181    nrOut = rulesDef[2*i + 1]; // number of outputs in rule #i
182    // ...calculate each output's product of middle fuzzy set value and minimum membership function (numerator) and sum of minimum membership function (denominator)
183    for (j=0; j<nrOut; j++)
184    {
185      out = rules[i][2*nrIn + 2*j]; //number of j-output
186      set = rules[i][2*nrIn + 2*j + 1]; //number of fuzzy set attributed to j-output
187      if (GetFuzzySetParam(set, unimp, midleft, midright, unimp) != 0) // gets range of core of given fuzzy set
188        { SAFEDELETEARRAY(denominators) SAFEDELETEARRAY(numerators) return 1; }
189      //defuzzParam[i] = minimum membership function for rule #i - calculated in fuzzyfication block
190      // defuzzyfication method of singletons (high): (fuzzy set modal value) * (minimum membership value)
191      numerators[out] += ((midleft + midright)/2.0) * defuzzParam[i];
192      denominators[out] += defuzzParam[i];
193    }
194  }
195
196  for (i=0; i<outputsNr; i++)
197  {
198    if (denominators[i] == 0)
199      setState(0, i);
200    else
201      setState(numerators[i]/denominators[i], i);
202  }
203
204  SAFEDELETEARRAY(denominators)
205  SAFEDELETEARRAY(numerators)
206
207  return 0;
208}
209
Note: See TracBrowser for help on using the repository browser.