[286] | 1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
[973] | 2 | // Copyright (C) 1999-2020 Maciej Komosinski and Szymon Ulatowski. |
---|
[286] | 3 | // See LICENSE.txt for details. |
---|
[109] | 4 | |
---|
| 5 | #include "neuroimpl-fuzzy.h" |
---|
| 6 | #include "neuroimpl-fuzzy-f0.h" |
---|
| 7 | #include <common/nonstd_stl.h> //min,max |
---|
| 8 | |
---|
| 9 | int NI_FuzzyNeuro::countOuts(const Model *m, const Neuro *fuzzy) |
---|
| 10 | { |
---|
[791] | 11 | int outputs = 0; |
---|
| 12 | for (int i = 0; i < m->getNeuroCount(); i++) |
---|
| 13 | for (int in = 0; in < m->getNeuro(i)->getInputCount(); in++) |
---|
| 14 | if (m->getNeuro(i)->getInput(in) == fuzzy) outputs++; |
---|
| 15 | return outputs; |
---|
[109] | 16 | } |
---|
| 17 | |
---|
| 18 | int NI_FuzzyNeuro::lateinit() |
---|
| 19 | { |
---|
[791] | 20 | int i, maxOutputNr; |
---|
[109] | 21 | |
---|
[791] | 22 | //check correctness of given parameters: string must not be null, sets&rules number > 0 |
---|
[973] | 23 | if ((fuzzySetsNr < 1) || (rulesNr < 1) || (fuzzySetString.length() == 0) || (fuzzyRulesString.length() == 0)) |
---|
[791] | 24 | return 0; //error |
---|
[109] | 25 | |
---|
[791] | 26 | // this part contains transformation of fuzzy sets |
---|
| 27 | fuzzySets = new double[4 * fuzzySetsNr]; //because every fuzzy set consist of 4 numbers |
---|
| 28 | // converts fuzzy string from f0 to table of fuzzy numbers type 'double' |
---|
| 29 | // (fill created space with numbers taken from string) |
---|
| 30 | // also checks whether number of fuzzy sets in the string equals declared in the definition |
---|
| 31 | if (FuzzyF0String::convertStrToSets(fuzzySetString, fuzzySets, fuzzySetsNr) != 0) |
---|
| 32 | return 0; //error |
---|
[109] | 33 | |
---|
[791] | 34 | // this part contains transformation of fuzzy rules and defuzzyfication parameters |
---|
| 35 | rulesDef = new int[2 * rulesNr]; //for each rule remembers number of inputs and outputs |
---|
| 36 | //check correctness of string and fill in the rulesDef |
---|
| 37 | if (FuzzyF0String::countInputsOutputs(fuzzyRulesString.c_str(), rulesDef, rulesNr) == 0) |
---|
| 38 | { |
---|
| 39 | defuzzParam = new double[rulesNr]; // parameters used in defuzyfication process |
---|
| 40 | // create space for rules according to rulesDef |
---|
| 41 | rules = new int*[rulesNr]; //list of rules... |
---|
| 42 | for (i = 0; i < rulesNr; i++) //...that contains rules body |
---|
| 43 | { |
---|
| 44 | rules[i] = new int[2 * (rulesDef[2 * i] + rulesDef[2 * i + 1])]; //each rule can have different number of inputs and outputs |
---|
| 45 | defuzzParam[i] = 0; //should be done a little bit earlier, but why do not use this loop? |
---|
| 46 | } |
---|
| 47 | // fill created space with numbers taken from string |
---|
| 48 | if (FuzzyF0String::convertStrToRules(fuzzyRulesString, rulesDef, rules, fuzzySetsNr, rulesNr, maxOutputNr) != 0) |
---|
| 49 | return 0; //error |
---|
| 50 | } |
---|
| 51 | else |
---|
| 52 | return 0; //error |
---|
[109] | 53 | |
---|
[791] | 54 | setChannelCount(countOuts(neuro->owner, neuro)); |
---|
| 55 | return 1; //success |
---|
[109] | 56 | } |
---|
| 57 | |
---|
| 58 | NI_FuzzyNeuro::~NI_FuzzyNeuro() |
---|
| 59 | { |
---|
[791] | 60 | if (rules) //delete rows and columns of **rules |
---|
| 61 | { |
---|
| 62 | for (int i = 0; i < rulesNr; i++) SAFEDELETEARRAY(rules[i]) |
---|
| 63 | SAFEDELETEARRAY(rules) |
---|
| 64 | } |
---|
| 65 | SAFEDELETEARRAY(defuzzParam) |
---|
| 66 | SAFEDELETEARRAY(rulesDef) |
---|
| 67 | SAFEDELETEARRAY(fuzzySets) |
---|
[109] | 68 | } |
---|
| 69 | |
---|
| 70 | int NI_FuzzyNeuro::GetFuzzySetParam(int set_nr, double &left, double &midleft, double &midright, double &right) |
---|
| 71 | { |
---|
[791] | 72 | if ((set_nr >= 0) && (set_nr < fuzzySetsNr)) |
---|
| 73 | { |
---|
| 74 | left = fuzzySets[4 * set_nr]; |
---|
| 75 | midleft = fuzzySets[4 * set_nr + 1]; |
---|
| 76 | midright = fuzzySets[4 * set_nr + 2]; |
---|
| 77 | right = fuzzySets[4 * set_nr + 3]; |
---|
| 78 | return 0; |
---|
| 79 | } |
---|
| 80 | else |
---|
| 81 | return 1; |
---|
[112] | 82 | } |
---|
[109] | 83 | |
---|
| 84 | /** Function conduct fuzzyfication of inputs and calculates - according to rules - crisp multi-channel output */ |
---|
| 85 | void NI_FuzzyNeuro::go() |
---|
| 86 | { |
---|
[791] | 87 | if (Fuzzyfication() != 0) |
---|
| 88 | return; |
---|
| 89 | if (Defuzzyfication() != 0) |
---|
| 90 | return; |
---|
[112] | 91 | } |
---|
[109] | 92 | |
---|
| 93 | /** |
---|
| 94 | * Function conduct fuzzyfication process - calculates minimum membership function (of every input) for each rule, |
---|
| 95 | * and writes results into defuzzParam - variable that contains data necessary for defuzzyfication |
---|
| 96 | */ |
---|
| 97 | int NI_FuzzyNeuro::Fuzzyfication() |
---|
| 98 | { |
---|
[791] | 99 | int i, j, nrIn, inputNr, nrFuzzySet; |
---|
| 100 | double minimumCut; // actual minimal level of cut (= min. membership function) |
---|
[109] | 101 | |
---|
[791] | 102 | // sets defuzzyfication parameters for each rule: |
---|
| 103 | for (i = 0; i < rulesNr; i++) |
---|
| 104 | { |
---|
| 105 | nrIn = rulesDef[2 * i]; // nr of inputs in rule #i |
---|
| 106 | minimumCut = 2; // the highest value of membership function is 1.0, so this value will definitely change |
---|
[907] | 107 | for (j = 0; (j < nrIn) && (minimumCut > 0); j++) //minimumCut can not be <0, so if =0 then stop calculations |
---|
[791] | 108 | { |
---|
| 109 | nrFuzzySet = rules[i][j * 2 + 1]; // j*2 moves pointer through each output, +1 moves to nr of fuzzy set |
---|
| 110 | inputNr = rules[i][j * 2]; // as above but gives input number |
---|
| 111 | minimumCut = min(minimumCut, TrapeziumFuzz(nrFuzzySet, getWeightedInputState(inputNr))); // value of membership function for this input and given fuzzy set |
---|
| 112 | } |
---|
[907] | 113 | if ((minimumCut > 1) || (minimumCut < 0)) |
---|
[791] | 114 | return 1; |
---|
| 115 | defuzzParam[i] = minimumCut; |
---|
| 116 | } |
---|
| 117 | return 0; |
---|
[112] | 118 | } |
---|
[109] | 119 | |
---|
| 120 | /** |
---|
| 121 | * Function calculates value of the membership function of the set given by wchich_fuzzy_set for given crisp value input_val |
---|
| 122 | * In other words, this function fuzzyficates given crisp value with given fuzzy set, returning it's membership function |
---|
| 123 | * @param which_fuzzy_set - 0 < number of set < fuzzySetsNr |
---|
| 124 | * @param input_val - crisp value of input in range <-1; 1> |
---|
| 125 | * @return value of membership function (of given input for given set) in range <0;1> or, if error occur, negative value |
---|
| 126 | */ |
---|
| 127 | double NI_FuzzyNeuro::TrapeziumFuzz(int which_fuzzy_set, double input_val) |
---|
| 128 | { |
---|
[791] | 129 | double range = 0, left = 0, midleft = 0, midright = 0, right = 0; |
---|
[109] | 130 | |
---|
[791] | 131 | if ((which_fuzzy_set < 0) || (which_fuzzy_set > fuzzySetsNr)) |
---|
| 132 | return -2; |
---|
| 133 | if ((input_val < -1) || (input_val > 1)) |
---|
| 134 | return -3; |
---|
[109] | 135 | |
---|
[791] | 136 | if (GetFuzzySetParam(which_fuzzy_set, left, midleft, midright, right) != 0) |
---|
| 137 | return -4; |
---|
[109] | 138 | |
---|
[791] | 139 | if ((input_val < left) || (input_val > right)) // greather than right value |
---|
| 140 | return 0; |
---|
| 141 | else if ((input_val >= midleft) && (input_val <= midright)) // in the core of fuzzy set |
---|
| 142 | return 1; |
---|
| 143 | else if ((input_val >= left) && (input_val < midleft)) // at the left side of trapezium |
---|
| 144 | { |
---|
| 145 | range = fabs(midleft - left); |
---|
| 146 | return fabs(input_val - left) / ((range > 0) ? range : 1); // quotient of distance between input and extreme left point of trapezium and range of rising side, or 1 |
---|
| 147 | } |
---|
| 148 | else if ((input_val > midright) && (input_val <= right)) // at the right side of trapezium |
---|
| 149 | { |
---|
| 150 | range = fabs(right - midright); |
---|
| 151 | return fabs(right - input_val) / ((range > 0) ? range : 1); // quotient of distance between input and extreme right point of trapezium and range of falling side, or 1 |
---|
| 152 | }; |
---|
[109] | 153 | |
---|
[791] | 154 | // should not occur |
---|
| 155 | return 0; |
---|
[109] | 156 | |
---|
[112] | 157 | } |
---|
[109] | 158 | |
---|
| 159 | /** |
---|
| 160 | * Function conducts defuzzyfication process: multi-channel output values are calculates with singleton method (method of high). |
---|
| 161 | * For each rules, all outputs fuzzy sets are taken and cut at 'cut-level', that is at minumum membership function (of current rule). |
---|
| 162 | * For all neuro pseudo-outputs, answer is calculated according to prior computations. |
---|
| 163 | * In fact, there is one output with multi-channel answer and appropriate values are given to right channels. |
---|
| 164 | */ |
---|
| 165 | int NI_FuzzyNeuro::Defuzzyfication() |
---|
| 166 | { |
---|
[791] | 167 | int i, j, nrIn, nrOut, out, set, outputsNr; |
---|
| 168 | double *numerators, *denominators, midleft, midright, unimp; |
---|
[109] | 169 | |
---|
[791] | 170 | outputsNr = getChannelCount(); |
---|
[109] | 171 | |
---|
[791] | 172 | numerators = new double[outputsNr]; |
---|
| 173 | denominators = new double[outputsNr]; |
---|
[109] | 174 | |
---|
[791] | 175 | for (i = 0; i < outputsNr; i++) numerators[i] = denominators[i] = 0; |
---|
[109] | 176 | |
---|
[791] | 177 | // for each rule... |
---|
| 178 | for (i = 0; i < rulesNr; i++) |
---|
| 179 | { |
---|
| 180 | nrIn = rulesDef[2 * i]; // number of inputs in rule #i |
---|
| 181 | nrOut = rulesDef[2 * i + 1]; // number of outputs in rule #i |
---|
| 182 | // ...calculate each output's product of middle fuzzy set value and minimum membership function (numerator) and sum of minimum membership function (denominator) |
---|
| 183 | for (j = 0; j < nrOut; j++) |
---|
| 184 | { |
---|
| 185 | out = rules[i][2 * nrIn + 2 * j]; //number of j-output |
---|
| 186 | set = rules[i][2 * nrIn + 2 * j + 1]; //number of fuzzy set attributed to j-output |
---|
| 187 | if (GetFuzzySetParam(set, unimp, midleft, midright, unimp) != 0) // gets range of core of given fuzzy set |
---|
| 188 | { |
---|
| 189 | SAFEDELETEARRAY(denominators) SAFEDELETEARRAY(numerators) return 1; |
---|
| 190 | } |
---|
| 191 | //defuzzParam[i] = minimum membership function for rule #i - calculated in fuzzyfication block |
---|
| 192 | // defuzzyfication method of singletons (high): (fuzzy set modal value) * (minimum membership value) |
---|
| 193 | numerators[out] += ((midleft + midright) / 2.0) * defuzzParam[i]; |
---|
| 194 | denominators[out] += defuzzParam[i]; |
---|
| 195 | } |
---|
| 196 | } |
---|
[109] | 197 | |
---|
[791] | 198 | for (i = 0; i < outputsNr; i++) |
---|
| 199 | { |
---|
| 200 | if (denominators[i] == 0) |
---|
| 201 | setState(0, i); |
---|
| 202 | else |
---|
| 203 | setState(numerators[i] / denominators[i], i); |
---|
| 204 | } |
---|
[109] | 205 | |
---|
[791] | 206 | SAFEDELETEARRAY(denominators) |
---|
| 207 | SAFEDELETEARRAY(numerators) |
---|
[109] | 208 | |
---|
[791] | 209 | return 0; |
---|
[112] | 210 | } |
---|