| 1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
|---|
| 2 | // Copyright (C) 1999-2015 Maciej Komosinski and Szymon Ulatowski. |
|---|
| 3 | // See LICENSE.txt for details. |
|---|
| 4 | |
|---|
| 5 | |
|---|
| 6 | #include "matrix_tools.h" |
|---|
| 7 | #include "lapack.h" |
|---|
| 8 | #include <cstdlib> |
|---|
| 9 | #include <cmath> |
|---|
| 10 | #include <cstdio> |
|---|
| 11 | #include <stdlib.h> //malloc(), embarcadero |
|---|
| 12 | #include <math.h> //sqrt(), embarcadero |
|---|
| 13 | |
|---|
| 14 | |
|---|
| 15 | double *Create(int nSize) |
|---|
| 16 | { |
|---|
| 17 | double *matrix = new double[nSize]; |
|---|
| 18 | |
|---|
| 19 | for (int i = 0; i < nSize; i++) |
|---|
| 20 | { |
|---|
| 21 | matrix[i] = 0; |
|---|
| 22 | } |
|---|
| 23 | |
|---|
| 24 | return matrix; |
|---|
| 25 | } |
|---|
| 26 | |
|---|
| 27 | double *Multiply(double *&a, double *&b, int nrow, int ncol, double ncol2, double *&toDel, int delSize) |
|---|
| 28 | { |
|---|
| 29 | double *c = Create(nrow * ncol2); |
|---|
| 30 | int i = 0, j = 0, k = 0; |
|---|
| 31 | |
|---|
| 32 | for (i = 0; i < nrow; i++) |
|---|
| 33 | { |
|---|
| 34 | for (j = 0; j < ncol2; j++) |
|---|
| 35 | { |
|---|
| 36 | for (k = 0; k < ncol; k++) |
|---|
| 37 | c[i * nrow + j] += a[i * nrow + k] * b[k * ncol + j]; |
|---|
| 38 | } |
|---|
| 39 | } |
|---|
| 40 | |
|---|
| 41 | if (delSize != 0) |
|---|
| 42 | delete[] toDel; |
|---|
| 43 | return c; |
|---|
| 44 | } |
|---|
| 45 | |
|---|
| 46 | double *Power(double *&array, int nrow, int ncol, double pow, double *&toDel, int delSize) |
|---|
| 47 | { |
|---|
| 48 | double *m_Power = Create(nrow * ncol); |
|---|
| 49 | if (pow == 2) |
|---|
| 50 | { |
|---|
| 51 | for (int i = 0; i < nrow; i++) |
|---|
| 52 | { |
|---|
| 53 | for (int j = 0; j < ncol; j++) |
|---|
| 54 | { |
|---|
| 55 | m_Power[i * nrow + j] = array[i * nrow + j] * array[i * nrow + j]; |
|---|
| 56 | } |
|---|
| 57 | |
|---|
| 58 | } |
|---|
| 59 | } |
|---|
| 60 | else |
|---|
| 61 | { |
|---|
| 62 | for (int i = 0; i < nrow; i++) |
|---|
| 63 | { |
|---|
| 64 | for (int j = 0; j < ncol; j++) |
|---|
| 65 | { |
|---|
| 66 | m_Power[i * nrow + j] = sqrt(array[i * nrow + j]); |
|---|
| 67 | } |
|---|
| 68 | |
|---|
| 69 | } |
|---|
| 70 | } |
|---|
| 71 | |
|---|
| 72 | if (delSize != 0) |
|---|
| 73 | delete[] toDel; |
|---|
| 74 | |
|---|
| 75 | return m_Power; |
|---|
| 76 | } |
|---|
| 77 | |
|---|
| 78 | void Print(double *&mat, int nelems) |
|---|
| 79 | { |
|---|
| 80 | for (int i = 0; i < nelems; i++) |
|---|
| 81 | printf("%6.2f ", mat[i]); |
|---|
| 82 | printf("\n"); |
|---|
| 83 | |
|---|
| 84 | } |
|---|
| 85 | |
|---|
| 86 | double *Transpose(double *&A, int arow, int acol, double *&toDel, int delSize) |
|---|
| 87 | { |
|---|
| 88 | double *result = Create(acol * arow); |
|---|
| 89 | |
|---|
| 90 | for (int i = 0; i < acol; i++) |
|---|
| 91 | for (int j = 0; j < arow; j++) |
|---|
| 92 | { |
|---|
| 93 | result[i * arow + j] = A[j * acol + i]; |
|---|
| 94 | } |
|---|
| 95 | |
|---|
| 96 | if (delSize != 0) |
|---|
| 97 | delete[] toDel; |
|---|
| 98 | |
|---|
| 99 | return result; |
|---|
| 100 | } |
|---|
| 101 | |
|---|
| 102 | //Weighted centring of a matrix. |
|---|
| 103 | //https://github.com/vegandevs/vegan/blob/master/src/goffactor.c |
|---|
| 104 | void wcentre(double *x, double *w, int *nr, int *nc) |
|---|
| 105 | { |
|---|
| 106 | int i, j, ij; |
|---|
| 107 | double sw, swx; |
|---|
| 108 | |
|---|
| 109 | for (i = 0, sw = 0.0; i < (*nr); i++) |
|---|
| 110 | sw += w[i]; |
|---|
| 111 | |
|---|
| 112 | for (j = 0; j < (*nc) ; j++) |
|---|
| 113 | { |
|---|
| 114 | for (i = 0, swx = 0.0, ij = (*nr)*j; i < (*nr); i++, ij++) |
|---|
| 115 | { |
|---|
| 116 | swx += w[i] * x[ij]; |
|---|
| 117 | } |
|---|
| 118 | swx /= sw; |
|---|
| 119 | for (i = 0, ij = (*nr)*j; i < (*nr); i++, ij++) |
|---|
| 120 | { |
|---|
| 121 | x[ij] -= swx; |
|---|
| 122 | x[ij] *= sqrt(w[i]); |
|---|
| 123 | } |
|---|
| 124 | } |
|---|
| 125 | } |
|---|
| 126 | |
|---|
| 127 | /** Computes the weighted MDS of the nSize x nSize distance matrix |
|---|
| 128 | @param vdEigenvalues [OUT] Vector of doubles. On return holds the eigenvalues of the |
|---|
| 129 | decomposed distance matrix (or rather, to be strict, of the matrix of scalar products |
|---|
| 130 | created from the matrix of distances). The vector is assumed to be empty before the function call and |
|---|
| 131 | all variance percentages are pushed at the end of it. |
|---|
| 132 | @param nSize size of the matrix of distances. |
|---|
| 133 | @param pDistances [IN] matrix of distances between parts. |
|---|
| 134 | @param Coordinates [OUT] array of three dimensional coordinates obtained from SVD of pDistances matrix. |
|---|
| 135 | @param weights [IN] vector of row weights. |
|---|
| 136 | */ |
|---|
| 137 | void MatrixTools::weightedMDS(std::vector<double> &vdEigenvalues, int nSize, double *pDistances, Pt3D *&Coordinates, double *weights) |
|---|
| 138 | { |
|---|
| 139 | // compute the matrix D that is the parameter of SVD |
|---|
| 140 | double *D = Create(nSize * nSize); |
|---|
| 141 | D = Power(pDistances, nSize, nSize, 2.0, D, nSize); |
|---|
| 142 | |
|---|
| 143 | for (int i = 0; i < 2; i++) |
|---|
| 144 | { |
|---|
| 145 | wcentre(D, weights, &nSize, &nSize); |
|---|
| 146 | D = Transpose(D, nSize, nSize, D, nSize); |
|---|
| 147 | } |
|---|
| 148 | |
|---|
| 149 | for (int i = 0; i < nSize; i++) |
|---|
| 150 | for (int j = 0; j < nSize; j++) |
|---|
| 151 | { |
|---|
| 152 | D[i * nSize + j] *= -0.5; |
|---|
| 153 | } |
|---|
| 154 | |
|---|
| 155 | double *Eigenvalues = Create(nSize); |
|---|
| 156 | double *S = Create(nSize * nSize); |
|---|
| 157 | |
|---|
| 158 | // call the SVD function |
|---|
| 159 | double *Vt = Create(nSize * nSize); |
|---|
| 160 | size_t astep = nSize * sizeof(double); |
|---|
| 161 | Lapack::JacobiSVD(D, astep, Eigenvalues, Vt, astep, nSize, nSize, nSize); |
|---|
| 162 | |
|---|
| 163 | double *W = Transpose(Vt, nSize, nSize, W, 0); |
|---|
| 164 | |
|---|
| 165 | delete[] D; |
|---|
| 166 | delete[] Vt; |
|---|
| 167 | |
|---|
| 168 | // deweight |
|---|
| 169 | double row_weight = 1; |
|---|
| 170 | for (int i = 0; i < nSize; i++) |
|---|
| 171 | { |
|---|
| 172 | row_weight = weights[i]; |
|---|
| 173 | for (int j = 0; j < nSize; j++) |
|---|
| 174 | { |
|---|
| 175 | W[i * nSize + j] /= sqrt(row_weight); |
|---|
| 176 | } |
|---|
| 177 | } |
|---|
| 178 | |
|---|
| 179 | for (int i = 0; i < nSize; i++) |
|---|
| 180 | for (int j = 0; j < nSize; j++) |
|---|
| 181 | { |
|---|
| 182 | if (i == j) |
|---|
| 183 | S[i * nSize + j] = Eigenvalues[i]; |
|---|
| 184 | else |
|---|
| 185 | S[i * nSize + j] = 0; |
|---|
| 186 | } |
|---|
| 187 | |
|---|
| 188 | // compute coordinates of points |
|---|
| 189 | double *sqS, *dCoordinates; |
|---|
| 190 | sqS = Power(S, nSize, nSize, 0.5, S, nSize); |
|---|
| 191 | dCoordinates = Multiply(W, sqS, nSize, nSize, nSize, W, nSize); |
|---|
| 192 | delete[] sqS; |
|---|
| 193 | |
|---|
| 194 | for (int i = 0; i < nSize; i++) |
|---|
| 195 | { |
|---|
| 196 | // set coordinate from the SVD solution |
|---|
| 197 | Coordinates[i].x = dCoordinates[i * nSize]; |
|---|
| 198 | Coordinates[i].y = dCoordinates[i * nSize + 1]; |
|---|
| 199 | if (nSize > 2) |
|---|
| 200 | Coordinates[i].z = dCoordinates[i * nSize + 2]; |
|---|
| 201 | else |
|---|
| 202 | Coordinates[i].z = 0; |
|---|
| 203 | } |
|---|
| 204 | |
|---|
| 205 | // store the eigenvalues in the output vector |
|---|
| 206 | for (int i = 0; i < nSize; i++) |
|---|
| 207 | { |
|---|
| 208 | double dElement = Eigenvalues[i]; |
|---|
| 209 | vdEigenvalues.push_back(dElement); |
|---|
| 210 | } |
|---|
| 211 | |
|---|
| 212 | delete[] Eigenvalues; |
|---|
| 213 | delete[] dCoordinates; |
|---|
| 214 | } |
|---|