[349] | 1 | // This file is a part of Framsticks SDK. http://www.framsticks.com/ |
---|
| 2 | // Copyright (C) 1999-2015 Maciej Komosinski and Szymon Ulatowski. |
---|
| 3 | // See LICENSE.txt for details. |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | #include "matrix_tools.h" |
---|
| 7 | #include "lapack.h" |
---|
| 8 | #include <cstdlib> |
---|
| 9 | #include <cmath> |
---|
| 10 | #include <cstdio> |
---|
[370] | 11 | #include <stdlib.h> //malloc(), embarcadero |
---|
[368] | 12 | #include <math.h> //sqrt(), embarcadero |
---|
[349] | 13 | |
---|
[368] | 14 | |
---|
[349] | 15 | double *Create(int nSize) |
---|
| 16 | { |
---|
[370] | 17 | double *matrix = (double *) malloc(nSize * sizeof (double)); |
---|
[349] | 18 | |
---|
| 19 | for (int i = 0; i < nSize; i++) |
---|
| 20 | { |
---|
| 21 | matrix[i] = 0; |
---|
| 22 | } |
---|
| 23 | |
---|
| 24 | return matrix; |
---|
| 25 | } |
---|
| 26 | |
---|
| 27 | double *Multiply(double *&a, double *&b, int nrow, int ncol, double ncol2, double *&toDel, int delSize) |
---|
| 28 | { |
---|
| 29 | double *c = Create(nrow * ncol2); |
---|
| 30 | int i = 0, j = 0, k = 0; |
---|
| 31 | |
---|
| 32 | for (i = 0; i < nrow; i++) |
---|
| 33 | { |
---|
| 34 | for (j = 0; j < ncol2; j++) |
---|
| 35 | { |
---|
| 36 | for (k = 0; k < ncol; k++) |
---|
| 37 | c[i * nrow + j] += a[i * nrow + k] * b[k * ncol + j]; |
---|
| 38 | } |
---|
| 39 | } |
---|
| 40 | |
---|
| 41 | if (delSize != 0) |
---|
| 42 | free(toDel); |
---|
| 43 | return c; |
---|
| 44 | } |
---|
| 45 | |
---|
| 46 | double *Power(double *&array, int nrow, int ncol, double pow, double *&toDel, int delSize) |
---|
| 47 | { |
---|
| 48 | double *m_Power = Create(nrow * ncol); |
---|
| 49 | if (pow == 2) |
---|
| 50 | { |
---|
| 51 | for (int i = 0; i < nrow; i++) |
---|
| 52 | { |
---|
| 53 | for (int j = 0; j < ncol; j++) |
---|
| 54 | { |
---|
| 55 | m_Power[i * nrow + j] = array[i * nrow + j] * array[i * nrow + j]; |
---|
| 56 | } |
---|
| 57 | |
---|
| 58 | } |
---|
| 59 | } |
---|
| 60 | else |
---|
| 61 | { |
---|
| 62 | for (int i = 0; i < nrow; i++) |
---|
| 63 | { |
---|
| 64 | for (int j = 0; j < ncol; j++) |
---|
| 65 | { |
---|
| 66 | m_Power[i * nrow + j] = sqrt(array[i * nrow + j]); |
---|
| 67 | } |
---|
| 68 | |
---|
| 69 | } |
---|
| 70 | } |
---|
| 71 | |
---|
| 72 | if (delSize != 0) |
---|
| 73 | free(toDel); |
---|
| 74 | |
---|
| 75 | return m_Power; |
---|
| 76 | } |
---|
| 77 | |
---|
| 78 | void Print(double *&mat, int nelems) |
---|
| 79 | { |
---|
| 80 | for (int i = 0; i < nelems; i++) |
---|
| 81 | printf("%6.2f ", mat[i]); |
---|
| 82 | printf("\n"); |
---|
| 83 | |
---|
| 84 | } |
---|
| 85 | |
---|
| 86 | double *Transpose(double *&A, int arow, int acol) |
---|
| 87 | { |
---|
| 88 | double *result = Create(acol * arow); |
---|
| 89 | |
---|
| 90 | for (int i = 0; i < acol; i++) |
---|
| 91 | for (int j = 0; j < arow; j++) |
---|
| 92 | { |
---|
| 93 | result[i * arow + j] = A[j * acol + i]; |
---|
| 94 | } |
---|
| 95 | |
---|
| 96 | return result; |
---|
| 97 | |
---|
| 98 | } |
---|
| 99 | |
---|
| 100 | /** Computes the SVD of the nSize x nSize distance matrix |
---|
| 101 | @param vdEigenvalues [OUT] Vector of doubles. On return holds the eigenvalues of the |
---|
| 102 | decomposed distance matrix (or rather, to be strict, of the matrix of scalar products |
---|
| 103 | created from the matrix of distances). The vector is assumed to be empty before the function call and |
---|
| 104 | all variance percentages are pushed at the end of it. |
---|
| 105 | @param nSize size of the matrix of distances. |
---|
| 106 | @param pDistances [IN] matrix of distances between parts. |
---|
| 107 | @param Coordinates [OUT] array of three dimensional coordinates obtained from SVD of pDistances matrix. |
---|
| 108 | */ |
---|
| 109 | void MatrixTools::SVD(std::vector<double> &vdEigenvalues, int nSize, double *pDistances, Pt3D *&Coordinates) |
---|
| 110 | { |
---|
| 111 | // compute squares of elements of this array |
---|
| 112 | // compute the matrix B that is the parameter of SVD |
---|
| 113 | double *B = Create(nSize * nSize); |
---|
| 114 | { |
---|
| 115 | // use additional scope to delete temporary matrices |
---|
| 116 | double *Ones, *Eye, *Z, *D; |
---|
| 117 | |
---|
| 118 | D = Create(nSize * nSize); |
---|
| 119 | D = Power(pDistances, nSize, nSize, 2.0, D, nSize); |
---|
| 120 | |
---|
| 121 | Ones = Create(nSize * nSize); |
---|
| 122 | for (int i = 0; i < nSize; i++) |
---|
| 123 | for (int j = 0; j < nSize; j++) |
---|
| 124 | { |
---|
| 125 | Ones[i * nSize + j] = 1; |
---|
| 126 | } |
---|
| 127 | |
---|
| 128 | Eye = Create(nSize * nSize); |
---|
| 129 | for (int i = 0; i < nSize; i++) |
---|
| 130 | { |
---|
| 131 | for (int j = 0; j < nSize; j++) |
---|
| 132 | { |
---|
| 133 | if (i == j) |
---|
| 134 | { |
---|
| 135 | Eye[i * nSize + j] = 1; |
---|
| 136 | } |
---|
| 137 | else |
---|
| 138 | { |
---|
| 139 | Eye[i * nSize + j] = 0; |
---|
| 140 | } |
---|
| 141 | } |
---|
| 142 | } |
---|
| 143 | |
---|
| 144 | Z = Create(nSize * nSize); |
---|
| 145 | for (int i = 0; i < nSize; i++) |
---|
| 146 | { |
---|
| 147 | for (int j = 0; j < nSize; j++) |
---|
| 148 | { |
---|
| 149 | Z[i * nSize + j] = 1.0 / ((double) nSize) * Ones[i * nSize + j]; |
---|
| 150 | } |
---|
| 151 | } |
---|
| 152 | |
---|
| 153 | for (int i = 0; i < nSize; i++) |
---|
| 154 | { |
---|
| 155 | for (int j = 0; j < nSize; j++) |
---|
| 156 | { |
---|
| 157 | Z[i * nSize + j] = Eye[i * nSize + j] - Z[i * nSize + j]; |
---|
| 158 | } |
---|
| 159 | } |
---|
| 160 | |
---|
| 161 | for (int i = 0; i < nSize; i++) |
---|
| 162 | { |
---|
| 163 | for (int j = 0; j < nSize; j++) |
---|
| 164 | { |
---|
| 165 | B[i * nSize + j] = Z[i * nSize + j] * -0.5; |
---|
| 166 | } |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | B = Multiply(B, D, nSize, nSize, nSize, B, nSize); |
---|
| 170 | B = Multiply(B, Z, nSize, nSize, nSize, B, nSize); |
---|
| 171 | |
---|
| 172 | free(Ones); |
---|
| 173 | free(Eye); |
---|
| 174 | free(Z); |
---|
| 175 | free(D); |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | double *Eigenvalues = Create(nSize); |
---|
| 179 | double *S = Create(nSize * nSize); |
---|
| 180 | |
---|
| 181 | // call SVD function |
---|
| 182 | double *Vt = Create(nSize * nSize); |
---|
| 183 | size_t astep = nSize * sizeof (double); |
---|
| 184 | Lapack::JacobiSVD(B, astep, Eigenvalues, Vt, astep, nSize, nSize, nSize); |
---|
| 185 | |
---|
| 186 | double *W = Transpose(Vt, nSize, nSize); |
---|
| 187 | |
---|
| 188 | free(B); |
---|
| 189 | free(Vt); |
---|
| 190 | |
---|
| 191 | for (int i = 0; i < nSize; i++) |
---|
| 192 | for (int j = 0; j < nSize; j++) |
---|
| 193 | { |
---|
| 194 | if (i == j) |
---|
| 195 | S[i * nSize + j] = Eigenvalues[i]; |
---|
| 196 | else |
---|
| 197 | S[i * nSize + j] = 0; |
---|
| 198 | } |
---|
| 199 | |
---|
| 200 | // compute coordinates of points |
---|
| 201 | double *sqS, *dCoordinates; |
---|
| 202 | sqS = Power(S, nSize, nSize, 0.5, S, nSize); |
---|
| 203 | dCoordinates = Multiply(W, sqS, nSize, nSize, nSize, W, nSize); |
---|
| 204 | free(sqS); |
---|
| 205 | |
---|
| 206 | for (int i = 0; i < nSize; i++) |
---|
| 207 | { |
---|
| 208 | // set coordinate from the SVD solution |
---|
| 209 | Coordinates[ i ].x = dCoordinates[i * nSize]; |
---|
| 210 | Coordinates[ i ].y = dCoordinates[i * nSize + 1 ]; |
---|
| 211 | if (nSize > 2) |
---|
| 212 | Coordinates[ i ].z = dCoordinates[i * nSize + 2 ]; |
---|
| 213 | else |
---|
| 214 | Coordinates[ i ].z = 0; |
---|
| 215 | } |
---|
| 216 | |
---|
| 217 | // store the eigenvalues in the output vector |
---|
| 218 | for (int i = 0; i < nSize; i++) |
---|
| 219 | { |
---|
| 220 | double dElement = Eigenvalues[i]; |
---|
| 221 | vdEigenvalues.push_back(dElement); |
---|
| 222 | } |
---|
| 223 | |
---|
| 224 | free(Eigenvalues); |
---|
| 225 | free(dCoordinates); |
---|
| 226 | } |
---|