// This file is a part of Framsticks SDK. http://www.framsticks.com/ // Copyright (C) 1999-2015 Maciej Komosinski and Szymon Ulatowski. // See LICENSE.txt for details. #include #include "model.h" #include #include #include Model::Model() { autobuildmaps = false; init(); } void Model::init() { partmappingchanged = 0; buildstatus = empty; modelfromgenotype = 0; startenergy = 1.0; checklevel = 1; #ifdef MODEL_V1_COMPATIBLE oldneurocount=-1; // == unknown oldconnections=0; #endif map = 0; f0map = 0; f0genoknown = 1; shape = SHAPE_UNKNOWN; } void Model::moveElementsFrom(Model &source) { int i; open(); for (i = 0; i < source.getPartCount(); i++) addPart(source.getPart(i)); for (i = 0; i < source.getJointCount(); i++) addJoint(source.getJoint(i)); for (i = 0; i < source.getNeuroCount(); i++) addNeuro(source.getNeuro(i)); source.parts.clear(); source.joints.clear(); source.neurons.clear(); source.clear(); } void Model::internalCopy(const Model &mod) { geno = mod.geno; f0genoknown = 0; startenergy = mod.startenergy; if (mod.getStatus() == valid) { modelfromgenotype = mod.modelfromgenotype; {for (int i = 0; i < mod.getPartCount(); i++) addPart(new Part(*mod.getPart(i))); } {for (int i = 0; i < mod.getJointCount(); i++) { Joint *oldj = mod.getJoint(i); Joint *j = new Joint(*oldj); addJoint(j); j->attachToParts(oldj->part1->refno, oldj->part2->refno); }} {for (int i = 0; i < mod.getNeuroCount(); i++) { Neuro *oldn = mod.getNeuro(i); Neuro *n = new Neuro(*oldn); addNeuro(n); if (oldn->part_refno >= 0) n->attachToPart(oldn->part_refno); else n->attachToJoint(oldn->joint_refno); }} for (int i = 0; i < mod.getNeuroCount(); i++) { Neuro *oldn = mod.getNeuro(i); Neuro *n = getNeuro(i); for (int ni = 0; ni < oldn->getInputCount(); ni++) { double w; Neuro *oldinput = oldn->getInput(ni, w); SString info = n->getInputInfo(ni); n->addInput(getNeuro(oldinput->refno), w, &info); } } } } Model::Model(const Geno &src, bool buildmaps) :autobuildmaps(buildmaps) { init(src); } void Model::operator=(const Model &mod) { clear(); open(); internalCopy(mod); buildstatus = mod.buildstatus; } Model::Model(const Model &mod, bool buildmaps) :autobuildmaps(buildmaps) { init(); open(); internalCopy(mod); buildstatus = mod.buildstatus; } void Model::init(const Geno &src) { init(); modelfromgenotype = 1; geno = src; build(); } void Model::resetAllDelta() { for (int i = 0; i < getJointCount(); i++) getJoint(i)->resetDelta(); } void Model::useAllDelta(bool yesno) { for (int i = 0; i < getJointCount(); i++) getJoint(i)->useDelta(yesno); } Model::~Model() { delmodel_list.action((intptr_t)this); clear(); } void Model::clear() { FOREACH(Part*, p, parts) delete p; FOREACH(Joint*, j, joints) delete j; FOREACH(Neuro*, n, neurons) delete n; parts.clear(); joints.clear(); neurons.clear(); delMap(); delF0Map(); init(); geno = Geno(); f0geno = Geno(); } Part *Model::addPart(Part *p) { p->owner = this; p->refno = parts.size(); parts += p; return p; } Joint *Model::addJoint(Joint *j) { j->owner = this; j->refno = joints.size(); joints += j; return j; } Neuro *Model::addNeuro(Neuro *n) { n->owner = this; n->refno = neurons.size(); neurons += n; return n; } void Model::removeNeuros(SList &nlist) { FOREACH(Neuro*, nu, nlist) { int i = findNeuro(nu); if (i >= 0) removeNeuro(i); } } void Model::removePart(int partindex, int removeattachedjoints, int removeattachedneurons) { Part *p = getPart(partindex); if (removeattachedjoints) { SList jlist; findJoints(jlist, p); FOREACH(Joint*, j, jlist) { int i = findJoint(j); if (i >= 0) removeJoint(i, removeattachedneurons); } } if (removeattachedneurons) { SList nlist; findNeuros(nlist, 0, p); removeNeuros(nlist); } parts -= partindex; delete p; } void Model::removeJoint(int jointindex, int removeattachedneurons) { Joint *j = getJoint(jointindex); if (removeattachedneurons) { SList nlist; findNeuros(nlist, 0, 0, j); removeNeuros(nlist); } joints -= jointindex; delete j; } void Model::removeNeuro(int neuroindex, bool removereferences) { Neuro* thisN = getNeuro(neuroindex); if (removereferences) { Neuro* n; // remove all references to thisN for (int i = 0; n = (Neuro*)neurons(i); i++) { Neuro *inp; for (int j = 0; inp = n->getInput(j); j++) if (inp == thisN) { n->removeInput(j); j--; } } } neurons -= neuroindex; delete thisN; } MultiMap& Model::getMap() { if (!map) map = new MultiMap(); return *map; } void Model::delMap() { if (map) { delete map; map = 0; } } void Model::delF0Map() { if (f0map) { delete f0map; f0map = 0; } } void Model::makeGenToGenMap(MultiMap& result, const MultiMap& gen1tomodel, const MultiMap& gen2tomodel) { result.clear(); MultiMap m; m.addReversed(gen2tomodel); result.addCombined(gen1tomodel, m); } void Model::getCurrentToF0Map(MultiMap& result) { result.clear(); if (!map) return; const MultiMap& f0m = getF0Map(); makeGenToGenMap(result, *map, f0m); } void Model::rebuild(bool buildm) { autobuildmaps = buildm; clear(); build(); } void Model::initMap() { if (!map) map = new MultiMap(); else map->clear(); } void Model::initF0Map() { if (!f0map) f0map = new MultiMap(); else f0map->clear(); } void Model::build() { f0errorposition = -1; f0warnposition = -1; MultiMap *convmap = autobuildmaps ? new MultiMap() : NULL; f0geno = (geno.getFormat() == '0') ? geno : geno.getConverted('0', convmap); f0genoknown = 1; if (f0geno.isInvalid()) { buildstatus = invalid; if (convmap) delete convmap; return; } SString f0txt = f0geno.getGenes(); buildstatus = building; // was: open(); if (autobuildmaps) { partmappingchanged = 0; initMap(); initF0Map(); } int pos = 0, lnum = 1, lastpos = 0; SString line; MultiRange frommap; LoggerToMemory mh(LoggerBase::Enable | LoggerBase::DontBlock); for (; f0txt.getNextToken(pos, line, '\n'); lnum++) { if (autobuildmaps) { frommap.clear(); frommap.add(lastpos, pos - 1); } mh.reset(); if (singleStepBuild(line, lnum, autobuildmaps ? (&frommap) : 0) == -1) { buildstatus = invalid; f0errorposition = lastpos; if (convmap) delete convmap; return; } if (mh.getWarningCount()) { if (f0warnposition < 0) f0warnposition = lastpos; } lastpos = pos; } mh.disable(); close(); if (convmap) { *f0map = *map; if (geno.getFormat() != '0') { MultiMap tmp; tmp.addCombined(*convmap, getMap()); *map = tmp; } delete convmap; } } const MultiMap& Model::getF0Map() { if (!f0map) { f0map = new MultiMap(); makeGeno(f0geno, f0map); f0genoknown = 1; } return *f0map; } Geno Model::rawGeno() { Geno tmpgen; makeGeno(tmpgen); return tmpgen; } void Model::makeGeno(Geno &g, MultiMap *map, bool handle_defaults) { if ((buildstatus != valid) && (buildstatus != building)) { g = Geno(0, 0, 0, "invalid model"); return; } SString gen; Param modelparam(f0_model_paramtab); Param partparam(f0_part_paramtab); Param jointparam(f0_joint_paramtab); Param neuroparam(f0_neuro_paramtab); Param connparam(f0_neuroconn_paramtab); static Part defaultpart; static Joint defaultjoint; static Neuro defaultneuro; static Model defaultmodel; static NeuroConn defaultconn; //static NeuroItem defaultneuroitem; Part *p; Joint *j; Neuro *n; int i; int len; int a, b; //NeuroItem *ni; SString mod_props; modelparam.select(this); modelparam.save2(mod_props, handle_defaults ? &defaultmodel : NULL, true, !handle_defaults); if (mod_props.len() > 1) //are there any non-default values? ("\n" is empty) { gen += "m:"; gen += mod_props; } for (i = 0; p = (Part*)parts(i); i++) { partparam.select(p); len = gen.len(); gen += "p:"; partparam.save2(gen, handle_defaults ? &defaultpart : NULL, true, !handle_defaults); if (map) map->add(len, gen.len() - 1, partToMap(i)); } for (i = 0; j = (Joint*)joints(i); i++) { jointparam.select(j); len = gen.len(); jointparam.setParamTab(j->usedelta ? f0_joint_paramtab : f0_nodeltajoint_paramtab); gen += "j:"; jointparam.save2(gen, handle_defaults ? &defaultjoint : NULL, true, !handle_defaults); if (map) map->add(len, gen.len() - 1, jointToMap(i)); } for (i = 0; n = (Neuro*)neurons(i); i++) { neuroparam.select(n); len = gen.len(); gen += "n:"; neuroparam.save2(gen, handle_defaults ? &defaultneuro : NULL, true, !handle_defaults); if (map) map->add(len, gen.len() - 1, neuroToMap(i)); } for (a = 0; a < neurons.size(); a++) { // inputs n = (Neuro*)neurons(a); // if ((n->getInputCount()==1)&&(n->getInput(0).refno <= n->refno)) // continue; // already done with Neuro::conn_refno for (b = 0; b < n->getInputCount(); b++) { double w; NeuroConn nc; Neuro* n2 = n->getInput(b, w); // if (((n2.parentcount==1)&&(n2.parent)&&(n2.parent->refno < n2.refno)) ^ // (n2.neuro_refno>=0)) // printf("!!!! bad Neuro::neuro_refno ?!\n"); // if ((n2.parentcount==1)&&(n2.parent)&&(n2.parent->refno < n2.refno)) // if (n2.neuro_refno>=0) // continue; // already done with Neuro::neuro_refno nc.n1_refno = n->refno; nc.n2_refno = n2->refno; nc.weight = w; SString **s = n->inputInfo(b); if ((s) && (*s)) nc.info = **s; connparam.select(&nc); len = gen.len(); gen += "c:"; connparam.save2(gen, handle_defaults ? &defaultconn : NULL, true, !handle_defaults); if (map) map->add(len, gen.len() - 1, neuroToMap(n->refno)); } } g = Geno(gen.c_str(), '0'); } ////////////// void Model::open() { if (buildstatus == building) return; buildstatus = building; modelfromgenotype = 0; partmappingchanged = 0; f0genoknown = 0; delMap(); } void Model::checkpoint() {} void Model::setGeno(const Geno& newgeno) { geno = newgeno; } void Model::clearMap() { Part *p; Joint *j; Neuro *n; int i; delMap(); delF0Map(); for (i = 0; p = (Part*)parts(i); i++) p->clearMapping(); for (i = 0; j = (Joint*)joints(i); i++) j->clearMapping(); for (i = 0; n = (Neuro*)neurons(i); i++) n->clearMapping(); } int Model::close() { if (buildstatus != building) logPrintf("Model", "close", LOG_WARN, "Unexpected close() - no open()"); if (internalcheck(1) > 0) { buildstatus = valid; if (partmappingchanged) { getMap(); Part *p; Joint *j; Neuro *n; int i; for (i = 0; p = (Part*)parts(i); i++) if (p->getMapping()) map->add(*p->getMapping(), partToMap(i)); for (i = 0; j = (Joint*)joints(i); i++) if (j->getMapping()) map->add(*j->getMapping(), jointToMap(i)); for (i = 0; n = (Neuro*)neurons(i); i++) if (n->getMapping()) map->add(*n->getMapping(), neuroToMap(i)); } } else buildstatus = invalid; return (buildstatus == valid); } int Model::validate() { return internalcheck(0); } Pt3D Model::whereDelta(const Part& start, const Pt3D& rot, const Pt3D& delta) { Orient roto; roto = rot; Orient o; roto.transform(o, start.o); //o.x=start.o/roto.x; //o.y=start.o/roto.y; //o.z=start.o/roto.z; return o.transform(delta) + start.p; } int Model::singleStepBuild(const SString &singleline, const MultiRange* srcrange) { return singleStepBuild(singleline, 0, srcrange); } int Model::singleStepBuild(const SString &singleline, int line_num, const MultiRange* srcrange) { SString error_message; int result = singleStepBuildNoLog(singleline, error_message, srcrange); if (result < 0) { if (error_message.len() == 0) // generic error when no detailed message is available error_message = "Invalid f0 code"; if (line_num>0) error_message += SString::sprintf(", line #%d", line_num); error_message += nameForErrors(); logPrintf("Model", "build", LOG_ERROR, "%s", error_message.c_str()); } return result; } int Model::singleStepBuildNoLog(const SString &line, SString& error_message, const MultiRange* srcrange) { error_message = SString::empty(); int pos = 0; const char*t = line.c_str(); for (; *t; t++, pos++) if (!strchr(" \r\t", *t)) break; if (*t == '#') return 0; if (!*t) return 0; if (!strncmp(t, "p:", 2)) { Param partparam(f0_part_paramtab); Part *p = new Part(); partparam.select(p); pos += 2; if (partparam.load2(line, pos) & ParamInterface::LOAD2_PARSE_FAILED) { delete p; error_message = "Invalid 'p:'"; return -1; } p->o.rotate(p->rot); parts += p; p->owner = this; if (srcrange) p->setMapping(*srcrange); return getPartCount() - 1; } if (!strncmp(t, "m:", 2)) { Param modelparam(f0_model_paramtab); modelparam.select(this); pos += 2; if (modelparam.load2(line, pos) & ParamInterface::LOAD2_PARSE_FAILED) { error_message = "Invalid 'm:'"; return -1; } return 0; } else if (!strncmp(t, "j:", 2)) { Param jointparam(f0_joint_paramtab); Joint *j = new Joint(); jointparam.select(j); pos += 2; j->owner = this; if (jointparam.load2(line, pos) & ParamInterface::LOAD2_PARSE_FAILED) { delete j; error_message = "Invalid 'j:'"; return -1; } bool p1_ok = false, p2_ok = false; if ((p1_ok = ((j->p1_refno >= 0) && (j->p1_refno < getPartCount()))) && (p2_ok = ((j->p2_refno >= 0) && (j->p2_refno < getPartCount())))) { addJoint(j); if ((j->d.x != JOINT_DELTA_MARKER) || (j->d.y != JOINT_DELTA_MARKER) || (j->d.z != JOINT_DELTA_MARKER)) { j->useDelta(1); j->resetDeltaMarkers(); } j->attachToParts(j->p1_refno, j->p2_refno); if (srcrange) j->setMapping(*srcrange); return j->refno; } else { error_message = SString::sprintf("Invalid reference to Part #%d", p1_ok ? j->p1_refno : j->p2_refno); delete j; return -1; } } else if (!strncmp(t, "n:", 2)) // neuro (or the old neuro object as the special case) { Param neuroparam(f0_neuro_paramtab); Neuro *nu = new Neuro(); neuroparam.select(nu); pos += 2; if (neuroparam.load2(line, pos) & ParamInterface::LOAD2_PARSE_FAILED) { delete nu; error_message = "Invalid 'n:'"; return -1; } #ifdef MODEL_V1_COMPATIBLE if (nu->neuro_refno>=0) // parent specified... { if (nu->neuro_refno >= getNeuroCount()) // and it's illegal { delete nu; return -1; } Neuro *parentNU=getNeuro(nu->neuro_refno); parentNU->addInput(nu,nu->weight); // default class for parented units: n-n link //if (nu->moredata.len()==0) nu->moredata="-"; } else #endif { // default class for unparented units: standard neuron if (nu->getClassName().len() == 0) nu->setClassName("N"); } /* if (nu->conn_refno>=0) // input specified... { if (nu->conn_refno >= getNeuroCount()) // and it's illegal { delete nu; return -1; } Neuro *inputNU=getNeuro(nu->conn_refno); nu->addInput(inputNU,nu->weight); } */ #ifdef MODEL_V1_COMPATIBLE nu->weight=1.0; #endif nu->owner = this; // attach to part/joint if (nu->part_refno >= 0) nu->attachToPart(nu->part_refno); if (nu->joint_refno >= 0) nu->attachToJoint(nu->joint_refno); if (srcrange) nu->setMapping(*srcrange); // todo: check part/joint ref# #ifdef MODEL_V1_COMPATIBLE if (hasOldNeuroLayout()) { int count=old_getNeuroCount(); neurons.insert(count,nu); oldneurocount=count+1; return oldneurocount-1; } else #endif { neurons += nu; return neurons.size() - 1; } } else if (!strncmp(t, "c:", 2)) // add input { Param ncparam(f0_neuroconn_paramtab); NeuroConn c; ncparam.select(&c); pos += 2; if (ncparam.load2(line, pos) & ParamInterface::LOAD2_PARSE_FAILED) { error_message = "Invalid 'c:'"; return -1; } bool n1_ok = false, n2_ok = false; if ((n1_ok = ((c.n1_refno >= 0) && (c.n1_refno < getNeuroCount()))) && (n2_ok = ((c.n2_refno >= 0) && (c.n2_refno < getNeuroCount())))) { Neuro *na = getNeuro(c.n1_refno); Neuro *nb = getNeuro(c.n2_refno); na->addInput(nb, c.weight, &c.info); if (srcrange) na->addMapping(*srcrange); return 0; } error_message = SString::sprintf("Invalid reference to Neuro #%d", n1_ok ? c.n2_refno : c.n1_refno); return -1; } #ifdef MODEL_V1_COMPATIBLE else if (!strncmp(t,"ni:",3)) // old neuroitem { // we always use old layout for "ni:" Param neuroitemparam(f0_neuroitem_paramtab); Neuro *nu=new Neuro(); neuroitemparam.select(nu); pos+=3; if (neuroitemparam.load2(line,pos) & ParamInterface::LOAD2_PARSE_FAILED) {delete nu; return -1;} // illegal parent? if ((nu->neuro_refno<0)||(nu->neuro_refno>=old_getNeuroCount())) { delete nu; return -1; } Neuro *parentN=getNeuro(nu->neuro_refno); // copy part/joint refno from parent, if possible if ((nu->part_refno<0)&&(parentN->part_refno>=0)) nu->part_refno=parentN->part_refno; if ((nu->joint_refno<0)&&(parentN->joint_refno>=0)) nu->joint_refno=parentN->joint_refno; nu->owner=this; // attach to part/joint if (nu->part_refno>=0) nu->attachToPart(nu->part_refno); if (nu->joint_refno>=0) nu->attachToJoint(nu->joint_refno); if (srcrange) nu->setMapping(*srcrange); // special case: old muscles // PARENT neuron will be set up to be the CHILD of the current one (!) if (nu->isOldEffector()) { nu->neuro_refno=parentN->refno; neurons+=nu; nu->owner=this; nu->addInput(parentN,nu->weight); // (!) nu->weight=1.0; parentN->invalidateOldItems(); return 0; // !!! -> ...getItemCount()-1; } parentN->addInput(nu,nu->weight); neurons+=nu; parentN->invalidateOldItems(); if (nu->getClassName().len()==0) { nu->setClassName("-"); // for compatibility, "ni" can define a n-n connection // referring to non-existent neuron (which will be hopefully defined later) // internal check will add the proper input to this unit // if conn_refno >=0 and input count==0 oldconnections=1; if (srcrange) parentN->addMapping(*srcrange); } else nu->weight=1.0; return 0; // !!! -> ...getItemCount()-1; } #endif else return -1; } #ifdef MODEL_V1_COMPATIBLE int Model::addOldConnectionsInputs() { if (!oldconnections) return 1; Neuro* n; for (int i=0;iconn_refno>=0) if (n->isNNConnection()) if (n->conn_refno < old_getNeuroCount()) { // good reference Neuro* parent=n->parent; // nn connection has exactly one parent int inp=parent->findInput(n); Neuro* target=getNeuro(n->conn_refno); parent->setInput(inp,target,n->weight); removeNeuro(i,0); // no need to remove references i--; } else { logPrintf("Model","internalCheck",LOG_ERROR, "illegal N-N connection #%d (reference to #%d)%s", i,n->conn_refno,nameForErrors().c_str()); return 0; } } oldconnections=0; return 1; } #endif ///////////// /** change the sequence of neuro units and fix references in "-" objects (n-n connections) */ void Model::moveNeuro(int oldpos, int newpos) { if (oldpos == newpos) return; // nop! Neuro *n = getNeuro(oldpos); neurons -= oldpos; neurons.insert(newpos, n); // conn_refno could be broken -> fix it #ifdef MODEL_V1_COMPATIBLE for (int i=0;iisNNConnection()) if (n2->conn_refno == oldpos) n2->conn_refno=newpos; else { if (n2->conn_refno > oldpos) n2->conn_refno--; if (n2->conn_refno >= newpos) n2->conn_refno++; } } invalidateOldNeuroCount(); #endif } #ifdef MODEL_V1_COMPATIBLE /** move all old neurons (class "N") to the front of the neurons list. @return number of old neurons */ int Model::reorderToOldLayout() { Neuro *n; int neurocount=0; for (int i=0;iisOldNeuron()) { moveNeuro(i,neurocount); neurocount++; i=neurocount-1; } } return neurocount; } #endif //////////// void Model::updateNeuroRefno() { for (int i = 0; i < neurons.size(); i++) { Neuro* n = (Neuro*)neurons(i); n->refno = i; } } #define VALIDMINMAX(var,template,field) \ if (var -> field < getMin ## template () . field) \ { var->field= getMin ## template () . field; \ logPrintf("Model","internalCheck",LOG_WARN,# field " too small in " # template " #%d (adjusted)",i);} \ else if (var -> field > getMax ## template () . field) \ { var->field= getMax ## template () . field; \ logPrintf("Model","internalCheck",LOG_WARN,# field " too big in " # template " #%d (adjusted)",i);} #define LINKFLAG 0x8000000 void Model::updateRefno() { int i; for (i = 0; i < getPartCount(); i++) getPart(i)->refno = i; for (i = 0; i < getJointCount(); i++) getJoint(i)->refno = i; for (i = 0; i < getNeuroCount(); i++) getNeuro(i)->refno = i; } SString Model::nameForErrors() const { if (geno.getName().len()>0) return SString::sprintf(" in '%s'", geno.getName().c_str()); return SString::empty(); } int Model::internalcheck(int final) { Part *p; Joint *j; Neuro *n; int i, k; int ret = 1; shape = SHAPE_UNKNOWN; if ((parts.size() == 0) && (neurons.size() == 0)) return 0; if (parts.size() == 0) size = Pt3D_0; else { Pt3D bbmin = ((Part*)parts(0))->p, bbmax = bbmin; for (i = 0; i < parts.size(); i++) { p = (Part*)parts(i); p->owner = this; p->refno = i; if (checklevel > 0) p->mass = 0.0; //VALIDMINMAX(p,part,mass);//mass is very special // VALIDMINMAX are managed manually when adding part properties in f0-def! // (could be made dynamic but not really worth the effort) VALIDMINMAX(p, Part, size); VALIDMINMAX(p, Part, scale.x); VALIDMINMAX(p, Part, scale.y); VALIDMINMAX(p, Part, scale.z); VALIDMINMAX(p, Part, hollow); VALIDMINMAX(p, Part, density); VALIDMINMAX(p, Part, friction); VALIDMINMAX(p, Part, ingest); VALIDMINMAX(p, Part, assim); VALIDMINMAX(p, Part, vsize); VALIDMINMAX(p, Part, vcolor.x); VALIDMINMAX(p, Part, vcolor.y); VALIDMINMAX(p, Part, vcolor.z); p->flags &= ~LINKFLAG; // for delta joint cycle detection if (p->p.x - p->size < bbmin.x) bbmin.x = p->p.x - p->size; if (p->p.y - p->size < bbmin.y) bbmin.y = p->p.y - p->size; if (p->p.z - p->size < bbmin.z) bbmin.z = p->p.z - p->size; if (p->p.x + p->size > bbmax.x) bbmax.x = p->p.x + p->size; if (p->p.y + p->size > bbmax.y) bbmax.y = p->p.y + p->size; if (p->p.z + p->size > bbmax.z) bbmax.z = p->p.z + p->size; if (shape == SHAPE_UNKNOWN) shape = (p->shape == Part::SHAPE_BALL_AND_STICK) ? SHAPE_BALL_AND_STICK : SHAPE_SOLIDS; else if (shape != SHAPE_ILLEGAL) { if ((p->shape == Part::SHAPE_BALL_AND_STICK) ^ (shape == SHAPE_BALL_AND_STICK)) { shape = SHAPE_ILLEGAL; logPrintf("Model", "internalCheck", LOG_WARN, "Inconsistent part shapes (mixed ball-and-stick and solids shape types)%s", nameForErrors().c_str()); } } } size = bbmax - bbmin; for (i = 0; i < joints.size(); i++) { j = (Joint*)joints(i); // VALIDMINMAX are managed manually when adding joint properties in f0-def! // (could be made dynamic but not really worth the effort) VALIDMINMAX(j, Joint, stamina); VALIDMINMAX(j, Joint, stif); VALIDMINMAX(j, Joint, rotstif); VALIDMINMAX(p, Part, vcolor.x); VALIDMINMAX(p, Part, vcolor.y); VALIDMINMAX(p, Part, vcolor.z); j->refno = i; j->owner = this; if (j->part1 && j->part2 && (j->part1 != j->part2)) { j->p1_refno = j->part1->refno; j->p2_refno = j->part2->refno; if (checklevel > 0) { j->part1->mass += 1.0; j->part2->mass += 1.0; } if ((j->usedelta) && ((j->d.x != JOINT_DELTA_MARKER) || (j->d.y != JOINT_DELTA_MARKER) || (j->d.z != JOINT_DELTA_MARKER))) { // delta positioning -> calc. orient. if (j->part2->flags & LINKFLAG) { ret = 0; logPrintf("Model", "internalCheck", LOG_ERROR, "Delta joint cycle detected at Joint #%d%s", i, nameForErrors().c_str()); } j->resetDeltaMarkers(); j->o = j->rot; j->part1->o.transform(j->part2->o, j->o); // j->part2->o.x=j->part1->o/j->o.x; // j->part2->o.y=j->part1->o/j->o.y; // j->part2->o.z=j->part1->o/j->o.z; j->part2->p = j->part2->o.transform(j->d) + j->part1->p; j->part2->flags |= LINKFLAG; j->part1->flags |= LINKFLAG; // for delta joint cycle detection } else { // abs.positioning -> calc. delta if (final) { // calc orient delta // Orient tmpo(j->part2->o); // tmpo*=j->part1->o; Orient tmpo; j->part1->o.revTransform(tmpo, j->part2->o); tmpo.getAngles(j->rot); j->o = j->rot; // calc position delta Pt3D tmpp(j->part2->p); tmpp -= j->part1->p; j->d = j->part2->o.revTransform(tmpp); } } if (final) { if (j->shape != Joint::SHAPE_FIXED) { if (j->d() > getMaxJoint().d.x) { ret = 0; logPrintf("Model", "internalCheck", LOG_ERROR, "Joint #%d too long%s", i, nameForErrors().c_str()); } } } } else { logPrintf("Model", "internalCheck", LOG_ERROR, "Illegal part references in Joint #%d%s", i, nameForErrors().c_str()); ret = 0; } if (shape != SHAPE_ILLEGAL) { if ((j->shape == Joint::SHAPE_BALL_AND_STICK) ^ (shape == SHAPE_BALL_AND_STICK)) { shape = SHAPE_ILLEGAL; logPrintf("Model", "internalCheck", LOG_WARN, "Inconsistent joint shapes (mixed old and new shapes)%s", nameForErrors().c_str()); } } } } #ifdef MODEL_V1_COMPATIBLE if (!addOldConnectionsInputs()) return 0; #endif updateNeuroRefno(); // valid refno is important for n-n connections check (later) for (i = 0; i < neurons.size(); i++) { n = (Neuro*)neurons(i); #ifdef MODEL_V1_COMPATIBLE VALIDMINMAX(n,Neuro,inertia); VALIDMINMAX(n,Neuro,force); VALIDMINMAX(n,Neuro,sigmo); n->conn_refno=-1; n->weight=1.0; n->neuro_refno=-1; #endif n->part_refno = (n->part) ? n->part->refno : -1; n->joint_refno = (n->joint) ? n->joint->refno : -1; } if (parts.size() && (checklevel > 0)) { for (i = 0; i < parts.size(); i++) { p = (Part*)parts(i); if (p->mass <= 0.001) p->mass = 1.0; p->flags &= ~LINKFLAG; } getPart(0)->flags |= LINKFLAG; int change = 1; while (change) { change = 0; for (i = 0; i < joints.size(); i++) { j = (Joint*)joints(i); if (j->part1->flags&LINKFLAG) { if (!(j->part2->flags&LINKFLAG)) { change = 1; j->part2->flags |= LINKFLAG; } } else if (j->part2->flags&LINKFLAG) { if (!(j->part1->flags&LINKFLAG)) { change = 1; j->part1->flags |= LINKFLAG; } } } } for (i = 0; i < parts.size(); i++) { p = (Part*)parts(i); if (!(p->flags&LINKFLAG)) { logPrintf("Model", "internalCheck", LOG_ERROR, "Not all parts connected (eg. Part #0 and Part #%d)%s", i, nameForErrors().c_str()); ret = 0; break; } } } for (i = 0; i < joints.size(); i++) { j = (Joint*)joints(i); if (j->p1_refno == j->p2_refno) { logPrintf("Model", "internalCheck", LOG_ERROR, "Illegal self connection, Joint #%d%s", i, nameForErrors().c_str()); ret = 0; break; } for (k = i + 1; k < joints.size(); k++) { Joint* j2 = (Joint*)joints(k); if (((j->p1_refno == j2->p1_refno) && (j->p2_refno == j2->p2_refno)) || ((j->p1_refno == j2->p2_refno) && (j->p2_refno == j2->p1_refno))) { logPrintf("Model", "internalCheck", LOG_ERROR, "Illegal duplicate Joint #%d and Joint #%d%s", i, k, nameForErrors().c_str()); ret = 0; break; } } } if (shape == SHAPE_ILLEGAL) ret = 0; return ret; } ///////////// int Model::getErrorPosition(bool includingwarnings) { return includingwarnings ? ((f0errorposition >= 0) ? f0errorposition : f0warnposition) : f0errorposition; } const Geno& Model::getGeno() const { return geno; } const Geno Model::getF0Geno() { if (buildstatus == building) logPrintf("Model", "getGeno", LOG_WARN, "Model was not completed - missing close()"); if (buildstatus != valid) return Geno("", '0', "", "invalid"); if (!f0genoknown) { if (autobuildmaps) { initF0Map(); makeGeno(f0geno, f0map); } else { delF0Map(); makeGeno(f0geno); } f0genoknown = 1; } return f0geno; } int Model::getPartCount() const { return parts.size(); } Part* Model::getPart(int i) const { return ((Part*)parts(i)); } int Model::getJointCount() const { return joints.size(); } Joint* Model::getJoint(int i) const { return ((Joint*)joints(i)); } int Model::findJoints(SList& result, const Part* part) { Joint *j; int n0 = result.size(); if (part) for (int i = 0; j = (Joint*)joints(i); i++) if ((j->part1 == part) || (j->part2 == part)) result += (void*)j; return result.size() - n0; } int Model::findNeuro(Neuro* n) { return neurons.find(n); } int Model::findPart(Part* p) { return parts.find(p); } int Model::findJoint(Joint* j) { return joints.find(j); } int Model::findJoint(Part *p1, Part *p2) { Joint* j; for (int i = 0; j = getJoint(i); i++) if ((j->part1 == p1) && (j->part2 == p2)) return i; return -1; } //////////////////// #ifdef MODEL_V1_COMPATIBLE void Model::calcOldNeuroCount() { if (oldneurocount>=0) return; oldneurocount=reorderToOldLayout(); } int Model::old_getNeuroCount() { calcOldNeuroCount(); return oldneurocount;} Neuro* Model::old_getNeuro(int i) {calcOldNeuroCount(); return (isetClassName("N"); moveNeuro(nu->refno,oldneurocount); oldneurocount=count+1; return (Neuro*)nu; } #endif /////////////////////// int Model::getNeuroCount() const { return neurons.size(); } Neuro* Model::getNeuro(int i) const { return (Neuro*)neurons(i); } int Model::getConnectionCount() const { int n = 0; for (int i = 0; i < getNeuroCount(); i++) n += getNeuro(i)->getInputCount(); return n; } int Model::findNeuros(SList& result, const char* classname, const Part* part, const Joint* joint) { Neuro *nu; SString cn(classname); int n0 = result.size(); for (int i = 0; nu = (Neuro*)neurons(i); i++) { if (part) if (nu->part != part) continue; if (joint) if (nu->joint != joint) continue; if (classname) if (nu->getClassName() != cn) continue; result += (void*)nu; } return result.size() - n0; } /////////////////// void Model::disturb(double amount) { int i; if (amount <= 0) return; for (i = 0; i < parts.size(); i++) { Part *p = getPart(i); p->p.x += (rnd01 - 0.5)*amount; p->p.y += (rnd01 - 0.5)*amount; p->p.z += (rnd01 - 0.5)*amount; } for (i = 0; i < joints.size(); i++) { Joint *j = getJoint(i); Pt3D tmpp(j->part2->p); tmpp -= j->part1->p; j->d = j->part2->o.revTransform(tmpp); } } void Model::move(const Pt3D& shift) { FOREACH(Part*, p, parts) p->p += shift; } void Model::rotate(const Orient& rotation) { FOREACH(Part*, p, parts) { p->p = rotation.transform(p->p); p->setOrient(rotation.transform(p->o)); } } void Model::buildUsingSolidShapeTypes(const Model& src_ballandstick_shapes, Part::Shape use_shape, float thickness) { for (int i = 0; i < src_ballandstick_shapes.getJointCount(); i++) { Joint *oj = src_ballandstick_shapes.getJoint(i); Part *p = addNewPart(use_shape); p->p = (oj->part1->p + oj->part2->p) / 2; Orient o; o.lookAt(oj->part1->p - oj->part2->p); p->rot = o.getAngles(); p->scale.x = oj->part1->p.distanceTo(oj->part2->p) / 2; p->scale.y = thickness; p->scale.z = thickness; } for (int i = 0; i < src_ballandstick_shapes.getPartCount(); i++) { Part *op = src_ballandstick_shapes.getPart(i); for (int j = 0; j < src_ballandstick_shapes.getJointCount(); j++) { Joint *oj = src_ballandstick_shapes.getJoint(j); if ((oj->part1 == op) || (oj->part2 == op)) { for (int j2 = j + 1; j2 < src_ballandstick_shapes.getJointCount(); j2++) { Joint *oj2 = src_ballandstick_shapes.getJoint(j2); if ((oj2->part1 == op) || (oj2->part2 == op)) { addNewJoint(getPart(j), getPart(j2), Joint::SHAPE_FIXED); } } break; } } } } SolidsShapeTypeModel::SolidsShapeTypeModel(const Model& m, Part::Shape use_shape, float thickness) { using_model = converted_model = NULL; if (m.getShapeType() == Model::SHAPE_BALL_AND_STICK) { converted_model = new Model; converted_model->open(); converted_model->buildUsingSolidShapeTypes(m, use_shape, thickness); converted_model->close(); using_model = converted_model; } else { converted_model = NULL; using_model = &m; } } ////////////////////// class MinPart : public Part { public: MinPart() { Param par(f0_part_paramtab, this); par.setMin(); } }; class MaxPart : public Part { public: MaxPart() { Param par(f0_part_paramtab, this); par.setMax(); } }; class MinJoint : public Joint { public: MinJoint() { Param par(f0_joint_paramtab, this); par.setMin(); } }; class MaxJoint : public Joint { public: MaxJoint() { Param par(f0_joint_paramtab, this); par.setMax(); } }; class MinNeuro : public Neuro { public: MinNeuro() { Param par(f0_neuro_paramtab, this); par.setMin(); } }; class MaxNeuro : public Neuro { public: MaxNeuro() { Param par(f0_neuro_paramtab, this); par.setMax(); } }; Part& Model::getMinPart() { static MinPart part; return part; } Part& Model::getMaxPart() { static MaxPart part; return part; } Part& Model::getDefPart() { static Part part; return part; } Joint& Model::getMinJoint() { static MinJoint joint; return joint; } Joint& Model::getMaxJoint() { static MaxJoint joint; return joint; } Joint& Model::getDefJoint() { static Joint joint; return joint; } Neuro& Model::getMinNeuro() { static MinNeuro neuro; return neuro; } Neuro& Model::getMaxNeuro() { static MaxNeuro neuro; return neuro; } Neuro& Model::getDefNeuro() { static Neuro neuro; return neuro; }